Optimized Slurries for Spray Drying: Different Approaches to Obtain Homogeneous and Deformable Alumina-Zirconia Granules.
Ontology highlight
ABSTRACT: Spray drying is widely used for producing granulated feed materials for compaction process, which is the current industrial method for manufacturing alumina-zirconia femoral heads. The optimization of the granules compaction behavior requires the control of the slurry rheology. Moreover, for a dual-phase ceramic suspension, the even phase distribution has to be kept through the atomization step. Here we present two approaches addressing the key issues involved in the atomization of a composite system. Alumina-10 vol % zirconia powders were prepared by either a powder mixing route, or by the surface modification of a commercial α-alumina powder with a zirconium salt. Slurries from both powders were spray dried. The correlation between slurry rheology and pH, granules morphology and sintered microstructures was here investigated and discussed on the ground of the two feed materials characteristics. The processing conditions were optimized to obtain dense and homogeneous alumina-zirconia micro-nano composites by both processing routes.
Project description:In pharmaceutical applications, the porous particles of organic compounds can improve the efficiency of drug delivery, for example into the pulmonary system. We report on the successful preparation of macroporous spherical granules of mannitol using a spray-drying process using polystyrene (PS) beads of ~340 nm diameter as a sacrificial templating agent. An FDA-approved solvent (ethyl acetate) was used to dissolve the PS beads. A combination of infrared spectroscopy and thermogravimetry analysis proved the efficiency of the etching process, provided that enough PS beads were exposed at the granule surface and formed an interconnected network. Using a lab-scale spray dryer and a constant concentration of PS beads, we observed similar granule sizes (~1-3 microns) and different porosity distributions for the mannitol/PS mass ratio ranging from 10:1 to 1:2. When transferred to a pilot-scale spray dryer, the 1:1 mannitol/PS composition resulted in different distributions of granule size and porosity depending on the atomization configuration (two-fluid or rotary nozzle). In all cases, the presence of PS beads in the spray-drying feedstock was found to favor the formation of the α mannitol polymorph and to lead to a small decrease in the mannitol decomposition temperature when heating in an inert atmosphere.
Project description:This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples -- low density particles, composite particles, microencapsulation, and glass stabilization -- is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts.
Project description:This paper investigated a synthesis process for highly porous Al2O3, Y-ZTA, and Ce-ZTA ceramic nanocomposites with gradient microstructure and improved mechanical properties. Ceramic nanofibres were synthesized as the starting material. The gradient microstructure was developed during spark plasma sintering using an asymmetric graphite arrangement that generated significant temperature differences (80-100 °C) between the opposite sides of the samples. Structural and mechanical properties of the fibrous ceramic composites were investigated. The effect of the temperature gradient on properties was also discussed. While the asymmetric configuration resulted in a gradient porosity, reference samples fabricated in standard graphite configuration were uniformly porous. The gradient structure and the ZrO2 addition led to improved hardness and compression strength of the sintered samples. However, the opposite sides of the samples exhibited considerable variations in both microstructure and in terms of properties. The upper part of the Ce-ZTA ceramic showed a highly porous structure with 18.2 GPa hardness, while the opposite side was highly densified with 23.0 GPa hardness. Compressive strength was 46.1 MPa and 52.1 MPa for Y-ZTA and Ce-ZTA sintered at 1300 °C, respectively, despite their high porosity. The research provided a promising approach to prepare highly porous ZTA composites with high strength for a wide range of applications.
Project description:Spin-crossover (SCO) triazole-based coordination polymers can be synthesized by micelle techniques, which almost always lead to rod-shaped nanoparticles. In order to notably reach new morphologies, we explore here the potentiality of the spray-drying (SD) method to get SCO materials. Three SCO coordination polymers and a mononuclear complex are investigated. In all cases, the SD method obtains particles definitely showing SCO. The features of the latter are yet always different from those of the referenced materials, in the sense that SCO is more gradual and incomplete, in adequacy with the poor crystallinity of the powders obtained by SD. In the case of coordination polymers, the particles are preferentially spherical. Indications of possible polymorphism and/or new materials induced by the use of the SD method are evidenced. In the case of the mononuclear complex, the SD method has allowed reproducing, in a quick and easy way, the well-known bulk compound. This exploratory work demonstrates the relevance of the concept and opens the way to a systematic scrutiny of all the experimental parameters to tune the size, morphology, and properties of the SD-synthesized SCO particles.
Project description:Resveratrol (RSV) is a natural polyphenol with several interesting broad-spectrum pharmacological properties. However, it is characterized by poor oral bioavailability, extensive first-pass effect metabolism and low stability. Indeed, RSV could benefit from the advantage of the sublingual route of administration. In this view, RSV attitudes to crossing the porcine sublingual mucosa were evaluated and promoted both by six different chemical permeation enhancers (CPEs) as well as by preparing four innovative fast-disintegrating sublingual mini-tablets by spray drying followed by direct compression. Since RSV by itself exhibits a low permeation aptitude, this could be significantly enhanced by the use of CPEs as well as by embedding RSV in a spray-dried powder to be compressed in order to prepare fast-disintegrating mini-tablets. The most promising observed CPEs (menthol, lysine and urea) were then inserted into the most promising spray-dried excipients' compositions (RSV-B and RSV-C), thus preparing CPE-loaded mini-tablets. However, this procedure leads to unsatisfactory results which preclude the possibility of merging the two proposed approaches. Finally, the best spray-dried composition (RSV-B) was further evaluated by SEM, FTIR, XRD and disintegration as well as dissolution behavior to prove its effectiveness as a sublingual fast-disintegrating formulation.
Project description:This study explored the feasibility of electrostatic spray drying for producing a monoclonal antibody (mAb) powder formulation at lower drying temperatures than conventional spray drying and its effect on protein stability. A mAb formulation was dried by either conventional spray drying or electrostatic spray drying with charge (ESD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC), and solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). Particle characterizations such as BET surface area, particle size distribution, and particle morphology were also performed. Conventional spray drying of the mAb formulation at the inlet temperature of 70 °C failed to generate dry powders due to poor drying efficiency; electrostatic spray drying at the same temperature and 5 kV charge enabled the formation of powder formulation with satisfactory moisture contents. Deconvoluted peak areas of deuterated samples from the ssHDX-MS study showed a good correlation with the loss of the monomeric peak area measured by size exclusion chromatography in the 90-day accelerated stability study conducted at 40 °C. Low-temperature (70 °C inlet temperature) drying with an electrostatic charge (5 kV) led to better protein physical stability as compared with the samples spray-dried at the high temperature (130 °C inlet temperature) without charge. This study shows that electrostatic spray drying can produce solid monoclonal antibody formulation at lower inlet temperature than traditional spray drying with better physical stability.
Project description:Zirconia nanoceramics are interesting materials for numerous high-temperature applications. Because their beneficial properties are mainly governed by the crystal and microstructure, it is essential to understand and control these features. The use of co-stabilizing agents in the sol-gel synthesis of zirconia submicro-particles should provide an effective tool for adjusting the particles' size and shape. Furthermore, alumina-doping is expected to enhance the particles' size and shape persistence at high temperatures, similar to what is observed in corresponding bulk ceramics. Dispersed alumina should inhibit grain growth by forming diffusion barriers, additionally impeding the martensitic phase transformation in zirconia grains. Here, alumina-doped zirconia particles with sphere-like shape and average diameters of ∼ 300 n m were synthesized using a modified sol-gel route employing icosanoic acid and hydroxypropyl cellulose as stabilizing agents. The particles were annealed at temperatures between 800 and 1200 ∘ C and characterized by electron microscopy, elemental analysis, and X-ray diffraction. Complementary elemental analyses confirmed the precise control over the alumina content (0-50 mol%) in the final product. Annealed alumina-doped particles showed more pronounced shape persistence after annealing at 1000 ∘ C than undoped particles. Quantitative phase analyses revealed an increased stabilization of the tetragonal/cubic zirconia phase and a reduced grain growth with increasing alumina content. Elemental mapping indicated pronounced alumina segregation near the grain boundaries during annealing.
Project description:Since the 1950s, the woodcutting industry has relied heavily on tungsten carbide (WC) cutting tools to overcome the challenges posed by the complex structure of wood, including hard knots and abrasive elements such as sand and tannic acids. These demands require cutting tools with superior thermal conductivity and mechanical properties. However, the rising cost of WC materials has prompted the search for alternative solutions. As a result, zirconia-toughened alumina (ZTA) ceramic materials with varying amounts of in situ formed SrAl12O19 have been introduced as potential substitutes. This study focuses on the processing, microstructural characterization, and mechanical behavior of these ceramic cutting tools with the goal of matching or exceeding the cutting performance and tool life of conventional WC tools. The study demonstrates the effectiveness of the improved ceramic tools through numerical evidence obtained from short-term trials and subsequent extended high-speed tests conducted on industrial cutting machines. In particular, comparable wood surface quality and wear resistance were achieved along with a significant improvement in cutting speed, resulting in a threefold reduction in machining time. These results underscore the potential of ceramic cutting tools as a cost-effective and efficient alternative in the woodcutting industry.
Project description:PurposeThe purpose of this work is to introduce solvent-assisted secondary drying, a method used to accelerate the residual solvent removal from spray dried materials. Spray-drying is used to manufacture amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients (APIs) with low aqueous solubility. In the spray-drying process, API and excipients are co-dissolved in a volatile organic solvent, atomized into droplets through a nozzle, and introduced to a drying chamber containing heated nitrogen gas. The product dries rapidly to form a powder, but small amounts of residual solvent (typically, 1 to 10 wt%) remain in the product and must be removed in a secondary-drying process. For some spray-dried materials, secondary drying by traditional techniques can take days and requires balancing stability risks with process time.MethodsSpray-dried polymers were secondary dried, comparing the results for three state-of-the-art methods that employed a jacketed, agitated-vessel dryer: (1) vacuum-only drying, (2) water-assisted drying, or (3) methanol-assisted drying. Samples of material were pulled at various time points and analyzed by gas chromatography (GC) and Karl Fischer (KF) titration to track the drying process.ResultsModel systems were chosen for which secondary drying is slow. For all cases studied, methanol-assisted drying outperformed the vacuum-only and water-assisted drying methods.ConclusionsThe observation that methanol-assisted drying is more effective than the other drying techniques is consistent with the free-volume theory of solvent diffusion in polymers.
Project description:After spilling coffee, a tell-tale stain is left by the drying droplet. This universal phenomenon, known as the coffee ring effect, is observed independent of the dispersed material. However, for many technological processes such as coating techniques and ink-jet printing a uniform particle deposition is required and the coffee ring effect is a major drawback. Here, we present a simple and versatile strategy to achieve homogeneous drying patterns using surface-modified particle dispersions. High-molecular weight surface-active polymers that physisorb onto the particle surfaces provide enhanced steric stabilization and prevent accumulation and pinning at the droplet edge. In addition, in the absence of free polymer in the dispersion, the surface modification strongly enhances the particle adsorption to the air/liquid interface, where they experience a thermal Marangoni backflow towards the apex of the drop, leading to uniform particle deposition after drying. The method is independent of particle shape and applicable to a variety of commercial pigment particles and different dispersion media, demonstrating the practicality of this work for everyday processes.