Nupr1 Modulates Methamphetamine-Induced Dopaminergic Neuronal Apoptosis and Autophagy through CHOP-Trib3-Mediated Endoplasmic Reticulum Stress Signaling Pathway.
Ontology highlight
ABSTRACT: Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH exposure causes detrimental effects on multiple organ systems, primarily the nervous system, especially dopaminergic pathways, in both laboratory animals and humans. In this study, we hypothesized that Nuclear protein 1 (Nupr1/com1/p8) is involved in METH-induced neuronal apoptosis and autophagy through endoplasmic reticulum (ER) stress signaling pathway. To test this hypothesis, we measured the expression levels of Nupr1, ER stress protein markers CHOP and Trib3, apoptosis-related protein markers cleaved-caspase3 and PARP, as well as autophagy-related protein markers LC3 and Beclin-1 in brain tissues of adult male Sprague-Dawley (SD) rats, rat primary cultured neurons and the rat adrenal pheochromocytoma cells (PC12 cells) after METH exposure. We also determined the effects of METH exposure on the expression of these proteins after silencing Nupr1, CHOP, or Trib3 expression with synthetic small hairpin RNA (shRNA) or siRNA in vitro, and after silencing Nupr1 in the striatum of rats by injecting lentivirus containing shRNA sequence targeting Nupr1 gene to rat striatum. The results showed that METH exposure increased Nupr1 expression that was accompanied with increased expression of ER stress protein markers CHOP and Trib3, and also led to apoptosis and autophagy in rat primary neurons and in PC12 cells after 24 h exposure (3.0 mM), and in the prefrontal cortex and striatum of rats after repeated intraperitoneal injections (15 mg/kg × 8 injections at 12 h intervals). Silencing of Nupr1 expression partly reduced METH-induced apoptosis and autophagy in vitro and in vivo. These results suggest that Nupr1 plays an essential role in METH-caused neuronal apoptosis and autophagy at relatively higher doses and may be a potential therapeutic target in high-dose METH-induced neurotoxicity.
Project description:Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1-Chop/P53-PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1-Chop/P53-PUMA/Beclin1 pathway is essential for mitochondrion-related METH-induced endothelial cell apoptosis and may be a potential therapeutic target for METH-caused cardiovascular toxicity. Future studies using knockout animal models are warranted to substantiate the present findings.
Project description:C/EBP-homologous protein (CHOP) is an important component of the endoplasmic reticulum (ER) stress response. We demonstrated the induction of ER stress in response to tunicamycin stimulation, as evidenced by increased expression of chaperone proteins Grp78, Grp94, and enhanced eukaryotic initiation factor 2 subunit 1 (eIF2α) phosphorylation in hepatocellular carcinoma cells. Tunicamycin-induced ER stress resulted in apoptosis and autophagy simultaneously. While inhibition of autophagy mediated by 3-methyladenine pretreatment or direct knockdown of LC3B promoted cell apoptosis, activation of autophagy with rapamycin decreased tunicamycin- induced apoptosis in HCC cells. Furthermore, CHOP was shown to be significantly upregulated upon treatment with tunicamycin in HCC cells. Specific knockdown of CHOP not only enhanced tunicamycin-induced autophagy, but also significantly attenuated ER stress-induced apoptosis in HCC cells. Accordingly, simultaneous inhibition of autophagy in HCC cells with CHOP-knockdown could partially resensitize ER stress-induced apoptosis. Taken together, our data indicate that CHOP may favor ER stress-induced apoptosis in HCC cells via inhibition of autophagy in vitro.
Project description:Intracerebral hemorrhage (ICH) is defined as bleeding into the brain parenchyma with a high mortality and morbidity rate. Unfortunately, it remains an unresolved medical problem. Therefore, it is necessary to find ways to reduce cellular apoptosis after ICH. Homocysteine-induced endoplasmic reticulum protein (HERP), a 54 kD transmembrane protein, is an early stress response protein encoded by ubiquitin-like domain member 1 (Herpud1) gene. In the present work, our group investigated the role of HERP after ICH and hemin stimulation, HERP expression was examined in mouse and primary cortical neurons after ICH and hemin stimulation by western blot and Immunofluorescent labeling. Using shRNA-HERP plasmid and recombinant adenovirus, we also investigated how HERP affected neuronal apoptosis after ICH and hemin stimulation. In addition, behavioral evaluation was used to ensure our models' success. In vivo and vitro studies, the expression of HERP was increased following ICH and hemin-exposed primary cortical neurons. HERP depletion activated the endoplasmic reticulum (ER) stress pathway and apoptosis in hemin-exposed primary cortical neurons, but inhibited autophagy in hemin-exposed primary cortical neurons. Overexpression of HERP inhibited the ER stress pathway and apoptosis, but activated autophagy in hemin-exposed primary cortical neurons. Consequently, we confirm that HERP plays a protective role in ICH model.
Project description:This study was designed to explore the inductive effect of glycated high-density lipoprotein (gly-HDL) on endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-mediated macrophage apoptosis and its relationship with autophagy. Our results showed that gly-HDL caused macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2α, and CHOP up-regulation, which were inhibited by 4-phenylbutyric acid (PBA, an ER stress inhibitor) and the gene silencing of PERK and CHOP. Similar data were obtained from macrophages treated by HDL isolated from diabetic patients. Gly-HDL induced macrophage autophagy as assessed by up-regulation of beclin-1, autophagy-related gene 5 and microtubule-associated protein one light chain 3-II, which were depressed by PBA and PERK siRNA. Gly-HDL-induced apoptosis, PERK phosphorylation and CHOP up-regulation were suppressed by rapamycin (an autophagy inducer), whereas aggravated by 3-methyladenine (an autophagy inhibitor) and beclin-1 siRNA. Administration of diabetic apoE-/- mice with rapamycin attenuated MOMA-2 and CHOP up-regulation and apoptosis in atherosclerotic lesions. These data indicate that gly-HDL may induce macrophage apoptosis through activating ER stress-CHOP pathway and ER stress mediates gly-HDL-induced autophagy, which in turn protects macrophages against apoptosis by alleviating CHOP pathway.
Project description:The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.
Project description:Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5(-/-) BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5(-/-) T cells. Knockdown of CHOP by siRNA protected Gimap5(-/-) T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells.
Project description:Hypoxia-induced gene expression is a critical determinant of neuron survival after stroke. Understanding the cell autonomous genetic program controlling adaptive and pathological transcription could have important therapeutic implications. To identify the factors that modulate delayed neuronal apoptosis after hypoxic injury, we developed an in vitro culture model that recapitulates these divergent responses and characterized the sequence of gene expression changes using microarrays. Hypoxia induced a disproportionate number of bZIP transcription factors and related targets involved in the endoplasmic reticulum stress response. Although the temporal and spatial aspects of ATF4 expression correlated with neuron loss, our results did not support the anticipated pathological role for delayed CHOP expression. Rather, CHOP deletion enhanced neuronal susceptibility to both hypoxic and thapsigargin-mediated injury and attenuated brain-derived neurotrophic factor-induced neuroprotection. Also, enforced expression of CHOP prior to the onset of hypoxia protected wild-type cultures against subsequent injury. Collectively, these findings indicate CHOP serves a more complex role in the neuronal response to hypoxic stress with involvement in both ischemic preconditioning and delayed neuroprotection.
Project description:Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-methyladenine or Atg7 siRNA, strongly diminished kaempferol-induced apoptosis. We further hypothesized that kaempferol can induce autophagy via endoplasmic reticulum (ER) stress pathway. Indeed, blocking ER stress by 4-phenyl butyric acid (4-PBA) or knockdown of CCAAT/enhancer-binding protein homologous protein (CHOP) with siRNA alleviated kaempferol-induced HepG2 or Huh7 cells autophagy; while transfection with plasmid overexpressing CHOP reversed the effect of 4-PBA on kaempferol-induced autophagy. Our results demonstrated that kaempferol induced hepatocarcinoma cell death via ER stress and CHOP-autophagy signaling pathway; kaempferol may be used as a potential chemopreventive agent for patients with hepatocellular carcinoma.
Project description:Oxidative stress and endoplasmic reticulum (ER) stress are thought to contribute to the pathogenesis of various neurodegenerative diseases including Parkinson disease (PD), however, the relationship between these stresses remains unclear. ATF6α is an ER-membrane-bound transcription factor that is activated by protein misfolding in the ER and functions as a critical regulator of ER quality control proteins in mammalian cells. The goal of this study was to explore the cause-effect relationship between oxidative stress and ER stress in the pathogenesis of neurotoxin-induced model of PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin known to produce oxidative stress, activated ATF6α and increased ER chaperones and ER-associated degradation (ERAD) component in dopaminergic neurons. Importantly, MPTP induced formation of ubiquitin- immunopositive inclusions and loss of dopaminergic neurons more prominently in mice deficient in ATF6α than in wild-type mice. Cultured cell experiments revealed that 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative stress not only promoted phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) but also enhanced interaction between phosphorylated p38MAPK and ATF6α, leading to increment in transcriptional activator activity of ATF6α. Thus, our results revealed a link between oxidative stress and ER stress by showing the importance of ATF6α in the protection of the dopaminergic neurons from MPTP that occurs through oxidative stress-induced activation of ATF6α and p38MAPK-mediated enhancement of ATF6α transcriptional activity.
Project description:Neurons are known to rely on autophagy for removal of defective proteins or organelles to maintain synaptic neurotransmission and counteract neurodegeneration. In spite of its importance for neuronal health, the physiological substrates of neuronal autophagy in the absence of proteotoxic challenge have remained largely elusive. We use knockout mice conditionally lacking the essential autophagy protein ATG5 and quantitative proteomics to demonstrate that loss of neuronal autophagy causes selective accumulation of tubular endoplasmic reticulum (ER) in axons, resulting in increased excitatory neurotransmission and compromised postnatal viability in vivo. The gain in excitatory neurotransmission is shown to be a consequence of elevated calcium release from ER stores via ryanodine receptors accumulated in axons and at presynaptic sites. We propose a model where neuronal autophagy controls axonal ER calcium stores to regulate neurotransmission in healthy neurons and in the brain.