Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2
Ontology highlight
ABSTRACT: The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3727 unique approved drugs and clinical compounds against SARS2 PLpro, identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent selfprocessing of nsp3 in cells, and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.
Project description:The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.
Project description:Emerging variants of SARS-CoV-2 and potential novel epidemic coronaviruses underline the importance of investigating various viral proteins as potential drug targets. The papain-like protease of coronaviruses has been less explored than other viral proteins; however, its substantive role in viral replication and impact on the host immune response make it a suitable target to study. This review article focuses on the structure and function of the papain-like protease (PLpro ) of SARS-CoV-2, including variants of concern, and compares it to those of other coronaviruses, such as SARS-CoV-1 and MERS-CoV. The protease's recognition motif is mirrored in ubiquitin and ISG15, which are involved in the antiviral immune response. Inhibitors, including GRL0617 derivatives, and their prospects as potential future antiviral agents are also discussed.
Project description:Inhibition of the papain-like protease (PLpro) of SARS-CoV-2 has been demonstrated to be a successful target to prevent the spreading of the coronavirus in the infected body. In this regard, covalent inhibitors, such as the recently proposed VIR251 ligand, can irreversibly inactivate PLpro by forming a covalent bond with a specific residue of the catalytic site (Cys111), through a Michael addition reaction. An inhibition mechanism can therefore be proposed, including four steps: (i) ligand entry into the protease pocket; (ii) Cys111 deprotonation of the thiol group by a Brønsted-Lowry base; (iii) Cys111-S- addition to the ligand; and (iv) proton transfer from the protonated base to the covalently bound ligand. Evaluating the energetics and PLpro conformational changes at each of these steps could aid the design of more efficient and selective covalent inhibitors. For this aim, we have studied by means of MD simulations and QM/MM calculations the whole mechanism. Regarding the first step, we show that the inhibitor entry in the PLpro pocket is thermodynamically favorable only when considering the neutral Cys111, that is, prior to the Cys111 deprotonation. For the second step, MD simulations revealed that His272 would deprotonate Cys111 after overcoming an energy barrier of ca. 32 kcal/mol (at the QM/MM level), but implying a decrease of the inhibitor stability inside the protease pocket. This information points to a reversible Cys111 deprotonation, whose equilibrium is largely shifted toward the neutral Cys111 form. Although thermodynamically disfavored, if Cys111 is deprotonated in close proximity to the vinylic carbon of the ligand, then covalent binding takes place in an irreversible way (third step) to form the enolate intermediate. Finally, due to Cys111-S- negative charge redistribution over the bound ligand, proton transfer from the initially protonated His272 is favored, finally leading to an irreversibly modified Cys111 and a restored His272. These results elucidate the selectivity of Cys111 to enable formation of a covalent bond, even if a weak proton acceptor is available, as His272.
Project description:Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-μM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 μM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
Project description:Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-μM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 μM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
Project description:SARS-CoV papain-like protease (PLpro) is an important antiviral target due to its key roles in SARS virus replication. The MeOH extracts of the fruits of the Paulownia tree yielded many small molecules capable of targeting PLpro. Five of these compounds were new geranylated flavonoids, tomentin A, tomentin B, tomentin C, tomentin D, tomentin E (1-5). Structure analysis of new compounds (1-5) by NMR showed that they all contain a 3,4-dihydro-2H-pyran moiety. This chemotype is very rare and is derived from cyclization of a geranyl group with a phenol functionality. Most compounds (1-12) inhibited PLpro in a dose dependent manner with IC50's raging between 5.0 and 14.4 μM. All new compounds having the dihydro-2H-pyran group showed better inhibition than their parent compounds (1 vs 11, 2 vs 9, 4 vs 12, 5 vs 6). In kinetic studies, 1-12 emerged to be reversible, mixed inhibitors.
Project description:The pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before. This crisis is unlikely contained in the absence of effective therapeutics or vaccine. The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays essential roles in virus replication and immune evasion, presenting a charming drug target. Given the PLpro proteases of SARS-CoV-2 and SARS-CoV share significant homology, inhibitor developed for SARS-CoV PLpro is a promising starting point of therapeutic development. In this study, we sought to provide structural frameworks for PLpro inhibitor design. We determined the unliganded structure of SARS-CoV-2 PLpro mutant C111S, which shares many structural features of SARS-CoV PLpro. This crystal form has unique packing, high solvent content and reasonable resolution 2.5 Å, hence provides a good possibility for fragment-based screening using crystallographic approach. We characterized the protease activity of PLpro in cleaving synthetic peptide harboring nsp2/nsp3 juncture. We demonstrate that a potent SARS-CoV PLpro inhibitor GRL0617 is highly effective in inhibiting protease activity of SARS-CoV-2 with the IC50 of 2.2 ± 0.3 μmol/L. We then determined the structure of SARS-CoV-2 PLpro complexed by GRL0617 to 2.6 Å, showing the inhibitor accommodates the S3-S4 pockets of the substrate binding cleft. The binding of GRL0617 induces closure of the BL2 loop and narrows the substrate binding cleft, whereas the binding of a tetrapeptide substrate enlarges the cleft. Hence, our results suggest a mechanism of GRL0617 inhibition, that GRL0617 not only occupies the substrate pockets, but also seals the entrance to the substrate binding cleft hence prevents the binding of the LXGG motif of the substrate.
Project description:The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.
Project description:As the pathogen of COVID-19, SARS-CoV-2 encodes two essential cysteine proteases that process the pathogen's two large polypeptide products pp1a and pp1ab in the human cell host to form 15 functionally important, mature nonstructural proteins. One of the two enzymes is papain-like protease or PLPro . It possesses deubiquitination and deISGylation activities that suppress host innate immune responses toward SARS-CoV-2 infection. To repurpose drugs for PLPro , we experimentally screened libraries of 33 deubiquitinase and 37 cysteine protease inhibitors on their inhibition of PLPro . Our results showed that 15 deubiquitinase and 1 cysteine protease inhibitors exhibit strong inhibition of PLPro at 200 μM. More comprehensive characterizations revealed seven inhibitors GRL0617, SJB2-043, TCID, DUB-IN-1, DUB-IN-3, PR-619, and S130 with an IC50 value below 40 μM and four inhibitors GRL0617, SJB2-043, TCID, and PR-619 with an IC50 value below 10 μM. Among four inhibitors with an IC50 value below 10 μM, SJB2-043 is the most unique in that it does not fully inhibit PLPro but has a noteworthy IC50 value of 0.56 μM. SJB2-043 likely binds to an allosteric site of PLPro to convene its inhibition effect, which needs to be further investigated. As a pilot study, the current work indicates that COVID-19 drug repurposing by targeting PLPro holds promise, but in-depth analysis of repurposed drugs is necessary to avoid omitting critical allosteric inhibitors.
Project description:SARS-CoV-2 encoded papain-like protease (PLpro) harbors a labile Zn site (Cys189-X-X-Cys192-X n -Cys224-X-Cys226) and a classic catalytic site (Cys111-His272-Asp286), which play key roles for viral replication and hence represent promising drug targets. In this Viewpoint, both sulfur-based drugs and peptides-based inhibitors may block Cys residues in the catalytic and/or Zn site of CoV-2-PLpro, leading to dysfunction of CoV-2-PLpro and thereby halting viral replication.