Interactomes of SARS-CoV-2 and human coronaviruses reveal host factors potentially affecting pathogenesis
Ontology highlight
ABSTRACT: Host-virus protein-protein interactions play key roles in the lifecycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Further characterization of these interactions and comparison to other large-scale study of cellular responses to SARS-CoV-2 infection elucidated how distinct SARS-CoV-2 viral proteins participate in its lifecycle. With these data mining, we discovered potential drug targets for the treatment of COVID-19. The interactomes of two key SARS-CoV-2-encoded viral proteins, NSP1 and N, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of SARS-CoV-2 provides valuable resources for the understanding and treating of this disease.
Project description:Host-virus protein-protein interactions play key roles in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity-labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Further characterization of these interactions and comparison to other large-scale study of cellular responses to SARS-CoV-2 infection elucidated how distinct SARS-CoV-2 viral proteins participate in its life cycle. With these data mining, we discovered potential drug targets for the treatment of COVID-19. The interactomes of two key SARS-CoV-2-encoded viral proteins, NSP1 and N, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of SARS-CoV-2 provides valuable resources for the understanding and treating of this disease.
Project description:We performed genome-wide CRISPR KO screens in human Huh7.5.1 cells to select for mutations that render host cells resistant to viral infection by SARS-CoV-2, human coronavirus 229E and OC43.
Project description:BackgroundThe ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a global public health concern due to relatively easy person-to-person transmission and the current lack of effective antiviral therapy. However, the exact molecular mechanisms of SARS-CoV-2 pathogenesis remain largely unknown.MethodsGenome-wide screening was used to establish intraviral and viral-host interactomes. Quantitative proteomics was used to investigate the peripheral blood mononuclear cell (PBMC) proteome signature in COVID-19.FindingsWe elucidated 286 host proteins targeted by SARS-CoV-2 and >350 host proteins that are significantly perturbed in COVID-19-derived PBMCs. This signature in severe COVID-19 PBMCs reveals a significant upregulation of cellular proteins related to neutrophil activation and blood coagulation, as well as a downregulation of proteins mediating T cell receptor signaling. From the interactome, we further identified that non-structural protein 10 interacts with NF-κB-repressing factor (NKRF) to facilitate interleukin-8 (IL-8) induction, which potentially contributes to IL-8-mediated chemotaxis of neutrophils and the overexuberant host inflammatory response observed in COVID-19 patients.ConclusionsOur study not only presents a systematic examination of SARS-CoV-2-induced perturbation of host targets and cellular networks but it also reveals insights into the mechanisms by which SARS-CoV-2 triggers cytokine storms, representing a powerful resource in the pursuit of therapeutic interventions.FundingNational Key Research and Development Project of China, National Natural Science Foundation of China, National Science and Technology Major Project, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission, Shanghai Municipal Key Clinical Specialty, Innovative Research Team of High-level Local Universities in Shanghai, Interdisciplinary Program of Shanghai Jiao Tong University, SII Challenge Fund for COVID-19 Research, Chinese Academy of Sciences (CAS) Large Research Infrastructure of Maintenance and Remolding Project, and Chinese Academy of Sciences Key Technology Talent Program.
Project description:The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.
Project description:The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Project description:Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming.
Project description:Environmental factors play a key role in the zoonotic transmission of emerging pathogenic viruses as mankind is constantly disturbing wildlife's ecosystems usually by cutting down forests to build human settlements or by catching wild animals for food, which deprives the viruses of their natural hosts and gives them opportunity to infect humans. In December 2019, a new coronavirus emerged from bats and was named SARS-CoV-2 by the International Committee for Taxonomy of Viruses, and the disease it causes named COVID-19 by the World Health Organization. Disease outbreaks such as SARS in 2002-2003, MERS in 2012 and the current COVID-19 pandemic are the result of higher mutation rates of coronaviruses and their unique capacity for genetic recombination, resulting in adaptations that make them more suitable to cross the species barriers and infect other species. This ability for host switching and interspecies infection is often attributed to the great diversity of these viruses, which is a result of viral and host factors such as the low fidelity of their RNA-dependent RNA polymerase, the high frequency of their homologous RNA recombination, and the adaptation of the S protein to bind host receptors like the angiotensin converting enzyme 2 (ACE2) in the case of SARS-CoV and SARS-CoV-2, and dipeptidyl peptidase 4 (DDP4) in MERS-CoV. This review presents an overview of the zoonotic transmission of SARS, MERS and COVID-19, focusing on the viral, host and environmental factors that favor the spillover of these viruses into humans, as well as the biological and ecological factors that make bats the perfect animal reservoir of infection for these viruses.
Project description:Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS-CoV-2 infection similar to that reported earlier in COVID-19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID-19 was only occasionally noticed. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters on day 4 and day 14 post-infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis and progression of the disease.
Project description:Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Project description:Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor and didn’t express TMPRSS2 protease, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity to pursue efforts to uncover the full landscape of SARS-CoV-2 regulators. We performed genome-wide, bidirectional CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. As well as identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Additionally, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins (MUC1, MUC4 and MUC21), IL6R and CD44 were identified . We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A virus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.