Enterovirus-A71 exploits peripherin and Rac1 to invade the central nervous system
Ontology highlight
ABSTRACT: Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of Hand, Foot and Mouth Disease (HFMD). EV-A71 infects motorneurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71 PRPH co-localizes with viral particles in the muscles at NMJs, and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications; suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH interacting partners. Of these, small GTP binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71. -
Project description:Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71, PRPH co-localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH-interacting partners. Of these, small GTP-binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71.
Project description:We assessed neurologic sequelae associated with an enterovirus 71 (EV71) outbreak in South Korea during 2009. Four of 94 patients had high signal intensities at brainstem or cerebellum on magnetic resonance imaging. Two patients died of cardiopulmonary collapse; 2 had severe neurologic sequelae. Severity and case-fatality rates may differ by EV71 genotype or subgenotype.
Project description:Limited recent molecular epidemiology data are available for pediatric Central Nervous System (CNS) infections in Europe. The aim of this study was to investigate the molecular epidemiology of enterovirus (EV) involved in CNS infections in children. Cerebrospinal fluid (CSF) from children (0-16 years) with suspected meningitis-encephalitis (ME) who were hospitalized in the largest pediatric hospital of Greece from October 2017 to September 2020 was initially tested for 14 common pathogens using the multiplex PCR FilmArray® ME Panel (FA-ME). CSF samples positive for EV, as well as pharyngeal swabs and stools of the same children, were further genotyped employing Sanger sequencing. Of the 330 children tested with FA-ME, 75 (22.7%) were positive for EV and 50 different CSF samples were available for genotyping. The median age of children with EV CNS infection was 2 months (IQR: 1-60) and 44/75 (58.7%) of them were male. There was a seasonal distribution of EV CNS infections, with most cases detected between June and September (38/75, 50.7%). EV genotyping was successfully processed in 84/104 samples: CSF (n = 45/50), pharyngeal swabs (n = 15/29) and stools (n = 24/25). Predominant EV genotypes were CV-B5 (16/45, 35.6%), E30 (10/45, 22.2%), E16 (6/45, 13.3%) and E11 (5/45, 11.1%). However, significant phylogenetic differences from previous described isolates were detected. No unusual neurologic manifestations were observed, and all children recovered without obvious acute sequelae. Specific EV circulating genotypes are causing a significant number of pediatric CNS infections. Phylogenetic analysis of these predominant genotypes found genetic differences from already described EV isolates.
Project description:PurposeEnteroviruses (EV) comprises many different types and are the most common cause of aseptic meningitis. How the virus affects the brain including potential differences between types are largely unknown. Measuring biomarkers in CSF is a tool to estimate brain damage caused by CNS infections.MethodsA retrospective study was performed in samples from 38 patients with acute neurological manifestations and positive CSF-EV RNA (n = 37) or serum-IgM (n = 1). The EV in 17 samples were typed by sequencing. The biomarkers neurofilament light (NFL), glial fibrillary acidic protein (GFAP), S-100B protein, amyloid-β (Aβ) 40 and Aβ42, total-tau (T-tau) and phosphorylated tau (P-tau) were measured and compared with data derived from a control group (n = 19).ResultsThere were no increased levels of GFAP (p ≤ 0.1) nor NFL (p ≤ 0.1) in the CSF of patients with EV meningitis (n = 38) compared with controls. However, we found decreased levels of Aβ42 (p < 0.001), Aβ40 (p < 0.001), T-tau (p ≥ 0.01), P-tau (p ≤ 0.001) and S-100B (p ≤ 0.001). E30 (n = 9) and CVB5 (n = 6) were the most frequent EV-types identified, but no differences in biomarker levels or other clinical parameters were found between the infecting virus type. Seven patients who were followed for longer than one month reported remaining cognitive impairment, although no correlations with biomarker concentrations were observed.ConclusionThere are no indication of neuronal or astrocyte damage in patients with EV meningitis. Yet, decreased concentrations of Aβ40, Aβ42, P-tau and T-tau were shown, a finding of unknown importance. Cognitive impairment after acute disease occurs, but with only a limited number of patients analysed, no conclusion can be drawn concerning any association with biomarker levels or EV types.
Project description:Long-term neurological and neurodevelopmental sequelae are a concerning issue for people with Enterovirus A71 (EV-A71) central nervous system (CNS) infection. Unfortunately, no longitudinal prospective clinical study has systematically investigated the consequences of EV-A71 CNS infection during early life on the later development of other psychiatric disorders. In this naturalistic longitudinal follow-up design, we followed forty-three youth, who got EV-A71 CNS involvement 6-18 years ago and were enrolled in other EV-A71 clinical studies then. Their psychiatric presentation, emotional/behavioral problems, and cognitive issues were examined using a psychiatrist-conducted diagnostic interview, parent- and self-rated questionnaires, and neuropsychological tests, respectively. We compared the prevalence of psychiatric disorders in youth with EV-A71 CNS involvement to a nationally representative cohort. Emotion/behavior and cognition in EV-A71-CNS-infected youth were compared to those in a matched community-based sample of healthy controls and youth with attention-deficit/hyperactivity disorder (ADHD). Compared to a national sample (absolute ADHD prevalence 10.1%), youth with EV-A71 CNS involvement had three times the odds of receiving an ADHD diagnosis (standardized prevalence ratio, 95% CI = 1.8, 4.2; absolute ADHD prevalence 34.9%). No other psychiatric diagnoses were more common in EV-A71-CNS-infected youth. Compared to community-based ADHD youth, EV-A71-CNS-infected youth with psychiatric disorders showed comparable core ADHD symptoms, opposition/defiance, autistic features, and suboptimal sustained attention performance (based on the Conners' Continuous Performance Test), all of which were more severe than healthy controls. EV-A71-CNS-infected youth without psychiatric disorders showed comparable autistic features to EV-A71-CNS-infected youth with psychiatric disorders and ADHD youth. EV-A71 CNS involvement may cause long-term, adverse psychiatric outcomes that develop into an ADHD diagnosis alongside social/communication/emotion problems and autistic features. We recommend earlier identification and intervention of these problems among these children.
Project description:BackgroundEnteroviruses are the most common causative agents of human illness. Enteroviruses have been associated with regional and global epidemics, recently, including with severe disease (Enterovirus A71 and D68), and are of interest as emerging viruses. Here, we typed Enterovirus A-D (EV) from central nervous system (CNS) and respiratory infections in Viet Nam.MethodsData and specimens from prospective observational clinical studies conducted between 1997 and 2010 were used. Species and serotypes were determined using type-specific RT-PCR and viral protein 1 or 4 (VP1, VP4) sequencing.ResultsSamples from patients with CNS infection (51 children - 10 CSF and 41 respiratory/rectal swabs) and 28 adults (28 CSF) and respiratory infection (124 children - 124 respiratory swabs) were analysed. Twenty-six different serotypes of the four Enterovirus species (A-D) were identified, including EV-A71 and EV-D68. Enterovirus B was associated with viral meningitis in children and adults. Hand, foot and mouth disease associated Enteroviruses A (EV-A71 and Coxsackievirus [CV] A10) were detected in children with encephalitis. Diverse serotypes of all four Enterovirus species were found in respiratory samples, including 2 polio-vaccine viruses, but also 8 CV-A24 and 8 EV-D68. With the exception of EV-D68, the relevance of these viruses in respiratory infection remains unknown.ConclusionWe describe the diverse spectrum of enteroviruses from patients with CNS and respiratory infections in Viet Nam between 1997 and 2010. These data confirm the global circulation of Enterovirus genera and their associations and are important for clinical diagnostics, patient management, and outbreak response.
Project description:The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a model organism for a variety of research areas in neuroscience, including neurophysiology, neuroethology, and neurobiology. This versatile model system has been more recently used in the study of central nervous system development and regeneration during adulthood, as well as in the study of vertebrate aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered at least 11,847 unique components (“genes”) containing full or near-full length protein sequences based on alignment to a reference set of known Actinopterygii protein sequences, with as many as 42,459 components containing at least a partial protein-coding sequence, providing broad coverage of the proteome. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra obtained was shown to be greatly improved with the assembly compared with using databases of sequences from closely related organisms.
Project description:Purpose of reviewCentral nervous system (CNS) tuberculosis is the most devastating form of tuberculosis (TB), with mortality and or neurological sequelae in over half of individuals. We reviewed original research and systematic reviews published since 1 January 2019 for new developments in CNS TB pathophysiology, diagnosis, management and prognosis.Recent findingsInsight in the pathophysiology is increasing steadily since the landmark studies in 1933, focussing on granuloma type classification, the relevance of the M. tuberculosis bacterial burden and the wide range of immunological responses. Although Xpert/RIF has been recommended by the WHO for extrapulmonary TB diagnosis, culture is still needed to increase the sensitivity of TB meningitis diagnosis. Sequential MRIs can improve understanding of neurological deficits at baseline and during treatment. Pharmacokinetic/pharmacodynamic modelling suggests that higher doses of rifampicin and isoniazid in TB meningitis could improve survival.SummaryRecent studies in the field of CNS-TB have largely focussed on TB meningitis. The outcome may improve by optimizing treatment dosing. This needs to be confirmed in clinical trials. Due to the important role of inflammation, these trials should be used as the platform to study the inflammatory and metabolomic responses. This could improve understanding of the biology of this disease and improve patient outlook by enabling individualised host-directed therapy.
Project description:Rapid nerve conduction in the CNS is facilitated by the insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics is not well understood. Hypothesizing that only a fraction of all myelin-related mRNAs has been identified so far, we subjected myelin biochemically purified from mouse brains at various ages to RNA sequencing. We find a surprisingly large pool of transcripts abundant and/or enriched in myelin. Furthermore, a comprehensive analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting that the incorporation of mRNAs into the myelin compartment is highly selective. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months of age were minor. We suggest that this transcript pool provides a basis for the local modulation of myelin turnover and adaptation, i.e. in the individual internode. A light-weight membrane fraction enriched for myelin was purified from mouse brains as described previously (Jahn et al., Neuromethods, 2013). For RNA-Seq, RNA was isolated from myelin of mice from indicated ages.
Project description:ObjectiveWe investigated the association between OAS1 gene polymorphism and susceptibility to central nervous system (CNS) involvement of enterovirus (EV)71 infection.MethodsThis case-control study was conducted among 180 children with EV71 infection, including 72 with mild infections without any complications and 108 with severe infections and CNS involvement; 201 children undergoing routine physical examination served as the healthy controls. For all the participants, the single nucleotide polymorphisms (SNPs) at OAS1 rs2660 and rs1131454 were analyzed using SNPscan multiple SNP typing methods.ResultsNo significant differences were found between the case and control groups in genotype or allele distributions of rs2660 and rs1131454. OAS1 rs2660 polymorphism was significantly different between the children with CNS involvement and those with mild EV71 infection, and the genotype AG frequency was higher and the genotype GG frequency was lower in children with CNS involvement. No significant difference was found in the distribution of genotypes or alleles of rs1131454 between the children with CNS involvement and those with mild EV71 infection.ConclusionsOAS1 gene rs2660 and rs1131454 SNPs are not associated with the susceptibility to or CNS involvement of EV71 infection, but OAS1 rs2660 SNPs are significantly correlated with the susceptibility to CNS involvement in EV71 infection. Children carrying OAS1 rs2660 AG genotype are more likely to have CNS involvement after EV71 infection.