Project description:BackgroundModern treatment guidelines for women with advanced cervical cancer recommend staging using 2-deoxy-2-[18F]fluoro-D-glucose positron emission computed tomography ([18F]FDG-PET/CT). However, the risk of false-positive nodes and therapy-related adverse events requires caution in treatment planning. Using data from the Netherlands Cancer Registry (NCR), we estimated the impact of [18F]FDG-PET/CT on treatment management in women with locally advanced cervical cancer, i.e., on nodal boosting, field extension, and/or debulking in cases of suspected lymph nodes.MethodsWomen diagnosed between 2009 and 2017, who received chemoradiotherapy for International Federation of Gynaecology and Obstetrics (2009) stage IB2, IIA2-IVB cervical cancer with an [18F]FDG-positive node, were retrospectively selected from the NCR database. Patients with pathological nodal examination before treatment were excluded. The frequency of nodal boosting, extended-field radiotherapy, and debulking procedures applied to patients with [18F]FDG-positive lymph nodes was evaluated.ResultsAmong the 434 eligible patients with [18F]FDG-positive nodes, 380 (88%) received interventions targeting these lymph nodes: 84% of these 380 patients received nodal boosting, 78% extended-field radiotherapy, and 12% debulking surgery. [18F]FDG-positive nodes in patients receiving these treatments were more likely to be classified as suspicious than inconclusive (p = 0.009), located in the para-aortic region (p < 0.001), and larger (p < 0.001) than in patients who did not receive these treatments.ConclusionWhile existing guidelines advocate [18F]FDG-PET/CT-guided treatment planning for the management of advanced cervical cancer, this study highlights that not all cases of [18F]FDG-positive nodes received an intervention, possibly due to the risk of false-positive results. Improvement of nodal staging may reduce suboptimal treatment planning.
Project description:Measuring tumor response to treatment based on computed tomography (CT) and/or magnetic resonance imaging (MRI) has been a widely debated issue (response criteria in solid tumors [RECIST] and World Health Organization criteria). Furthermore, early identification of nonresponding patients is of great importance because the rates of response of common malignant solid tumors to chemotherapy are in the range of only 20-30%. Therefore, quantitative imaging of tumor metabolism with 18F-FDG PET/CT may provide important advantages and thus reduce side effects and costs of ineffective therapy. However, the evidence to date for the use of 18F-FDG-PET/CT with this indication is limited.
The purpose of the present trial is to determine the impact of 18F-FDG PET/CT in the management of advanced colorectal cancer. The aim is also to confirm whether a metabolic response can be used as a surrogate end point in monitoring treatment response in this cancer type.
The study consists of 40 patients with advanced colorectal cancer patients. All patients will be studied with 18F-FDG PET/CT combined with diagnostic contrast enhanced abdominal CT before the start of chemotherapy and re-evaluated 4-5 weeks after the initiation of therapy. Effect of this metabolic and anatomic change in therapy are evaluated and correlated to survival, morbidity, and treatment -related costs. Histopathologic confirmation of response is evaluated whenever possible. The data will be collected between 2008 and 2012.
Project description:This study aimed to explore the application of two radiotracers (18F-fluorodeoxyglucose (FDG) and 18F-fluoromisonidazole (FMISO)) in monitoring hepatic metastases of human colorectal cancer (CRC). Mouse models of CRC hepatic metastases were established by implantation of the human CRC cell lines LoVo and HT29 by intrasplenic injection. Wound healing and Transwell assays were performed to examine cell migration and invasion abilities. Radiotracer-based cellular uptake in vitro and micro-positron emission tomography imaging of liver metastases in vivo were performed. The incidence of liver metastases in LoVo-xenografted mice was significantly higher than that in HT29-xenografted ones. The SUVmax/mean values of 18F-FMISO, but not 18F-FDG, in LoVo xenografts were significantly greater than in HT29 xenografts. In vitro, LoVo cells exhibited stronger metastatic potential and higher radiotracer uptake than HT29 cells. Mechanistically, the expression of HIF-1α and GLUT-1 in LoVo cells and LoVo tumor tissues was remarkably higher than in HT29 cells and tissues. Linear regression analysis demonstrated correlations between cellular 18F-FDG/18F-FMISO uptake and HIF-1α/GLUT-1 expression in vitro, as well as between 18F-FMISO SUVmax and GLUT-1 expression in vivo. 18F-FMISO uptake may serve as a potential biomarker for the detection of liver metastases in CRC, whereas its clinical use warrants validation.
Project description:The tyrosine kinase inhibitor (TKI) Lenvatinib represents one of the most effective therapeutic options in patients with advanced radioiodine refractory differentiated thyroid carcinoma (DTC). We aimed to assess the role of 2-deoxy-2-[18F] fluoro-D-glucose positron-emission-tomography/computed-tomography (18F-FDG-PET/CT) in the monitoring of functional tumor response compared to morphological response. In 22 patients, a modified Positron Emission Tomography Response Criteria In Solid Tumors (mPERCIST) evaluation before treatment with Lenvatinib and at 3 and 6 month follow up was performed. Further PET-parameters and morphologic tumor response using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 were assessed and their prediction of progression-free survival (PFS) and disease-specific survival (DSS) was evaluated. Most patients were rated stable in morphological evaluation and progressive using a metabolic response. All patients who responded to therapy through RECIST showed a decline in nearly all Positron Emission Tomography (PET)-parameters. For both time-points, non-responders according to mPERCIST showed significantly lower median PFS and DSS, whereas according to RECIST, only DSS was significantly lower. Tumor response assessment by 18F-FDG-PET outperforms morphological response assessment by CT in patients with advanced radioiodine refractory DTC treated with Lenvatinib, which seems to be correlated with clinical outcomes.
Project description:PurposeThe purpose of our meta-analysis and systematic review was to compare the diagnostic performance of [18F]FDG PET/CT and [18F]FDG PET/MRI in colorectal liver metastasis.MethodsWe searched PubMed, Embase, and Web of Science for eligible articles until November 2022. Studies focusing on the diagnostic value of [18F]FDG PET/CT or PET/MRI for colorectal liver metastasis were included. Using a bivariate random-effect model, the pooled sensitivity and specificity for [18F]FDG PET/CT and [18F]FDG PET/MRI were reported as estimates with 95% confidence intervals (CIs). Heterogeneity among pooled studies was assessed using the I2 statistic. The Quality Assessment of Diagnostic Performance Studies (QUADAS-2) method was used to evaluate the quality of the studies that were included.ResultsThere were a total of 2743 publications identified in the initial search, finally, a total of 21 studies comprising 1036 patients were included. The pooled sensitivity, specificity, and AUC of [18F]FDG PET/CT in were 0.86 (95% CI: 0.76-0.92), 0.89 (95% CI: 0.83-0.94), and 0.92(95% CI: 0.90-0.94). [18F]FDG PET/MRI were 0.84 (95% CI: 0.77-0.89), 1.00 (95% CI: 0.32-1.00), and 0.89(95% CI: 0.86-0.92), respectively.Conclusion[18F]FDG PET/CT shows similar performance compared to [18F]FDG PET/MRI in detecting colorectal liver metastasis. However, pathological results were not obtained for all patients in the included studies and PET/MRI results were derived from studies with small sample sizes. There is a need for additional, larger prospective studies on this issue.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier (CRD42023390949).
Project description:BackgroundTo test the advantages of positron emission tomography and computed tomography (PET/CT) for diagnosing lymph nodes and staging nasopharyngeal carcinoma and to investigate its benefits for survival and treatment decisions.MethodsThe performance of PET/CT and magnetic resonance imaging (MRI) in diagnosis was compared based on 460 biopsied lymph nodes. Using the propensity matching method, survival differences of T3N1M0 patients with (n = 1093) and without (n = 1377) PET/CT were compared in diverse manners. A radiologic score model was developed and tested in a subset of T3N1M0 patients.ResultsPET/CT performed better than MRI with higher sensitivity, accuracy, and area under the receiver operating characteristic curve (96.7% vs. 88.5%, p < 0.001; 88.0% vs. 81.1%, p < 0.001; 0.863 vs. 0.796, p < 0.05) in diagnosing lymph nodes. Accordingly, MRI-staged T3N0-3M0 patients showed nondifferent survival rates, as they were the same T3N1M0 if staged by PET/CT. In addition, patients staged by PET/CT and MRI showed higher survival rates than those staged by MRI alone (p < 0.05), regardless of the Epstein-Barr virus DNA load. Interestingly, SUVmax-N, nodal necrosis, and extranodal extension were highly predictive of survival. The radiologic score model based on these factors performed well in risk stratification with a C-index of 0.72. Finally, induction chemotherapy showed an added benefit (p = 0.006) for the high-risk patients selected by the model but not for those without risk stratification (p = 0.78).ConclusionPET/CT showed advantages in staging nasopharyngeal carcinoma due to a more accurate diagnosis of lymph nodes and this contributed to a survival benefit. PET/CT combined with MRI provided prognostic factors that could identify high-risk patients and guide individualized treatment.
Project description:Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy.
Project description:PurposeTo explore guidelines on the use of MRI and PET/CT monitoring primary tumor response to neoadjuvant chemotherapy (NAC), taking breast cancer subtype into account.Materials and methodsIn this prospective cohort study, 188 women were included with stages II and III breast cancer. MRI and 18F-FDG-PET/CT were acquired before and during NAC. Baseline pathology was assessed from tumor biopsy. Tumors were stratified into HER2-positive, ER-positive/HER2-negative (ER-positive), and ER-negative/PR-negative/HER2-negative (triple-negative) subtypes, and treated according to subtype. Primary endpoint was pathological complete response (pCRmic) defined as no or only small numbers of scattered invasive tumor cells. We evaluated imaging scenarios using MRI only, PET/CT only, and combinations.ResultspCRmic was found in 35/46 (76.1%) of HER2-positive, 11/87 (12.6%) of ER-positive, and 31/55 (56.4%) of triple-negative tumors. For HER2-positive tumors, MRI yielded the strongest predictor (AUC: 0.735; sensitivity 36.2%), outperforming PET/CT (AUC: 0.543; p = 0.04), and with comparable results to combined imaging (AUC: 0.708; p = 0.213). In ER-positive tumors, the combination of MRI and PET/CT was slightly superior (AUC: 0.818; sensitivity 55.8%) over MRI alone (AUC: 0.742; p = 0.117) and PET/CT alone (AUC: 0.791). However, even though relatively large numbers of ER-positive tumor patients were included, no significant differences were yet found. For triple-negative tumors, MRI (AUC: 0.855; sensitivity 45.4%), PET/CT (AUC: 0.844; p = 0.220) and combined imaging (AUC: 0.868; p = 0.213) yielded comparable results.ConclusionsFor HER2-positive tumors, MRI shows significant advantage over PET/CT. For triple-negative tumors, comparable results were seen for MRI, PET/CT and combined imaging. For ER-positive tumors, combining MRI with PET/CT may result in optimal response monitoring, although not yet significantly.
Project description:BackgroundThere is a growing interest in the use of F-18 FDG PET-CT to monitor tuberculosis (TB) treatment response. Tuberculosis lung lesions are often complex and diffuse, with dynamic changes during treatment and persisting metabolic activity after apparent clinical cure. This poses a challenge in quantifying scan-based markers of burden of disease and disease activity. We used semi-automated, whole lung quantification of lung lesions to analyse serial FDG PET-CT scans from the Catalysis TB Treatment Response Cohort to identify characteristics that best correlated with clinical and microbiological outcomes.ResultsQuantified scan metrics were already associated with clinical outcomes at diagnosis and 1 month after treatment, with further improved accuracy to differentiate clinical outcomes after standard treatment duration (month 6). A high cavity volume showed the strongest association with a risk of treatment failure (AUC 0.81 to predict failure at diagnosis), while a suboptimal reduction of the total glycolytic activity in lung lesions during treatment had the strongest association with recurrent disease (AUC 0.8 to predict pooled unfavourable outcomes). During the first year after TB treatment lesion burden reduced; but for many patients, there were continued dynamic changes of individual lesions.ConclusionsQuantification of FDG PET-CT images better characterised TB treatment outcomes than qualitative scan patterns and robustly measured the burden of disease. In future, validated metrics may be used to stratify patients and help evaluate the effectiveness of TB treatment modalities.
Project description:Rationale: Since its first implementation nanoparticle-assisted photothermal cancer therapy has been studied extensively, although mainly with focus on optimal nanoparticle design. However, development of efficient treatment protocols, as well as reliable and early evaluation tools in vivo, are needed to push the therapy towards clinical translation. Positron emission tomography (PET) is a non-invasive imaging technique that is currently finding extensive use for early evaluation of cancer therapies; an approach that has become of increasing interest due to its great potential for personalized medicine. Methods: In this study, we performed PET imaging to evaluate the treatment response two days after nanoparticle-assisted photothermal cancer therapy in tumor-bearing mice. We used three different tracers; 2'-deoxy-2'-18F-fluoro-D-glucose (18F-FDG), 3'-deoxy-3'-18F-fluorothymidine (18F-FLT), and O-(2'-18F-fluoroethyl)-L-tyrosine (18F-FET) to image and measure treatment induced changes in glucose uptake, cell proliferation, and amino acid transport, respectively. After therapy, tumor growth was monitored longitudinally until endpoint was reached. Results: We found that nanoparticle-assisted photothermal therapy overall inhibited tumor growth and prolonged survival. All three PET tracers had a significant decrease in tumor uptake two days after therapy and these changes correlated with future tumor growth, with 18F-FDG having the most predictive value in this tumor model. Conclusion: This study shows that 18F-FDG, 18F-FLT, and 18F-FET are all robust markers for the treatment response of photothermal therapy, and demonstrate that PET imaging can be used for stratification and optimization of the therapy. Furthermore, having a selection of PET tracers that can reliably measure treatment response is highly valuable as the individual tracer might be excluded in certain applications where physiological processes limit their contrast to background.