Genomics

Dataset Information

0

Gene expression response to eupolauridine-9591 (E9591) and liriodenine methiodide (LMT) in Saccharomyces cerevisiae


ABSTRACT: Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans. However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasis–related genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis, including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.

ORGANISM(S): Saccharomyces cerevisiae Schizosaccharomyces pombe

PROVIDER: GSE101749 | GEO | 2018/02/16

REPOSITORIES: GEO

Similar Datasets

2019-08-13 | E-MTAB-7648 | biostudies-arrayexpress
2007-12-14 | E-MEXP-1215 | biostudies-arrayexpress
2008-07-15 | GSE11236 | GEO
2008-10-20 | E-GEOD-11236 | biostudies-arrayexpress
2021-12-21 | GSE176575 | GEO
2023-12-27 | PXD045443 | Pride
2021-05-24 | GSE161646 | GEO
2021-05-24 | GSE161644 | GEO
2023-12-18 | GSE242192 | GEO
2021-10-21 | ST001954 | MetabolomicsWorkbench