Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis
Ontology highlight
ABSTRACT: The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs. By Capture Hi-C and three-dimensional modeling of the locus, we demonstrate that forelimbs and hindlimbs have fundamentally different chromatin configurations, whereby Pen and Pitx1 interact in hindlimbs and are physically separated in forelimbs. Structural variants can convert the inactive into the active conformation, thereby inducing Pitx1 misexpression in forelimbs, causing partial arm-to-leg transformation in mice and humans. Thus, tissue-specific three-dimensional chromatin conformation can contribute to enhancer activity and specificity in vivo and its disturbance can result in gene misexpression and disease.
Project description:Extensive functional analyses have demonstrated that the pituitary homeodomain transcription factor Pitx1 plays a critical role in specifying hindlimb morphology in vertebrates. However, much less is known regarding the target genes and cis-regulatory elements through which Pitx1 acts. Earlier studies suggested that the hindlimb transcription factors Tbx4, HoxC10, and HoxC11 might be transcriptional targets of Pitx1, but definitive evidence for direct regulatory interactions has been lacking. Using ChIP-Seq on embryonic mouse hindlimbs, we have pinpointed the genome-wide location of Pitx1 binding sites during mouse hindlimb development and identified potential gene targets for Pitx1. We determined that Pitx1 binding is significantly enriched near genes involved in limb morphogenesis, including Tbx4, HoxC10, and HoxC11. Notably, Pitx1 is bound to the previously identified HLEA and HLEB hindlimb enhancers of the Tbx4 gene and to a newly identified Tbx2 hindlimb enhancer. Moreover, Pitx1 binding is significantly enriched on hindlimb relative to forelimb-specific cis-regulatory features that are differentially marked by H3K27ac. However, our analysis revealed that Pitx1 also strongly associates with many functionally verified limb enhancers that exhibit similar levels of activity in the embryonic mesenchyme of forelimbs and hindlimbs. We speculate that Pitx1 influences hindlimb morphology both through the activation of hindlimb specific enhancers as well as through the hindlimb-specific modulation of enhancers that are active in both sets of limbs. Embryonic hindlimb buds from 4 ICR mouse samples were used.
Project description:Extensive functional analyses have demonstrated that the pituitary homeodomain transcription factor Pitx1 plays a critical role in specifying hindlimb morphology in vertebrates. However, much less is known regarding the target genes and cis-regulatory elements through which Pitx1 acts. Earlier studies suggested that the hindlimb transcription factors Tbx4, HoxC10, and HoxC11 might be transcriptional targets of Pitx1, but definitive evidence for direct regulatory interactions has been lacking. Using ChIP-Seq on embryonic mouse hindlimbs, we have pinpointed the genome-wide location of Pitx1 binding sites during mouse hindlimb development and identified potential gene targets for Pitx1. We determined that Pitx1 binding is significantly enriched near genes involved in limb morphogenesis, including Tbx4, HoxC10, and HoxC11. Notably, Pitx1 is bound to the previously identified HLEA and HLEB hindlimb enhancers of the Tbx4 gene and to a newly identified Tbx2 hindlimb enhancer. Moreover, Pitx1 binding is significantly enriched on hindlimb relative to forelimb-specific cis-regulatory features that are differentially marked by H3K27ac. However, our analysis revealed that Pitx1 also strongly associates with many functionally verified limb enhancers that exhibit similar levels of activity in the embryonic mesenchyme of forelimbs and hindlimbs. We speculate that Pitx1 influences hindlimb morphology both through the activation of hindlimb specific enhancers as well as through the hindlimb-specific modulation of enhancers that are active in both sets of limbs.
Project description:The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.
Project description:The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.
Project description:Pitx1, critical regulator of a limited hindlimb-specific gene network, targets the limb development program common to both fore- and hindlimbs in order to implement hindlimb-specific limb morphology.
Project description:Pitx1, critical regulator of a limited hindlimb-specific gene network, targets the limb development program common to both fore- and hindlimbs in order to implement hindlimb-specific limb morphology.
Project description:The analysis of differentially expressed genes is a powerful approach to elucidate the genetic mechanisms underlying the morphological and evolutionary diversity among serially homologous structures, both within the same organism (e.g., hand vs. foot) and between different species (e.g., hand vs. wing). In the developing embryo, limb-specific expression of Pitx1, Tbx4, and Tbx5 regulates the determination of limb identity. However, numerous lines of evidence, including the fact that these three genes encode transcription factors, indicate that additional genes are involved in the Pitx1-Tbx hierarchy. To examine the molecular distinctions coded for by these factors, and to identify novel genes involved in the determination of limb identity, we have used Serial Analysis of Gene Expression (SAGE) to generate comprehensive gene expression profiles from intact, developing mouse forelimbs and hindlimbs. To minimize the extraction of erroneous SAGE tags from low-quality sequence data, we used a new algorithm to extract tags from -analyzed sequence data and obtained 68,406 and 68,450 SAGE tags from forelimb and hindlimb SAGE libraries, respectively. We also developed an improved method for determining the identity of SAGE tags that increases the specificity of and provides additional information about the confidence of the tag-UniGene cluster match. The most differentially expressed gene between our SAGE libraries was Pitx1. The differential expression of Tbx4, Tbx5, and several limb-specific Hox genes was also detected; however, their abundances in the SAGE libraries were low. Because numerous other tags were differentially expressed at this low level, we performed a 'virtual' subtraction with 362,344 tags from six additional nonlimb SAGE libraries to further refine this set of candidate genes. This subtraction reduced the number of candidate genes by 74%, yet preserved the previously identified regulators of limb identity. This study presents the gene expression complexity of the developing limb and identifies candidate genes involved in the regulation of limb identity. We propose that our computational tools and the overall strategy used here are broadly applicable to other SAGE-based studies in a variety of organisms. Keywords: other
Project description:The bat offers an alternative paradigm to the standard mouse and chick model of limb development as it has extremely divergent forelimbs (long digits supporting a wing) and hindlimbs (short digits and claws) due the distinct requirements of both aerial and terrestrial locomotion. We used a cross-species microarray approach to identify differentially expressed (DE) genes between the bat (Minniopterus natalensis) forelimb and hindlimb autopods at Carollia developmental stages (CS) 16 and CS17, and between the bat (CS17) and mouse (E13.5) forelimb autopods. Several DE genes were identified, including two homeobox genes, Meis2, a proximal limb-patterning gene, and Hoxd11, a gene involved in digit elongation. Both genes are significantly over-expressed in the developing bat forelimb as compared to the hindlimb and equivalently staged mouse forelimbs.
Project description:Enhancer hijacking, a common cause of gene misregulation linked to disease, occurs when non-matching enhancers and promoters interact ectopically. This interaction is made possible by genetic changes that alter the arrangement or insulation of gene regulatory landscapes. While the concept of enhancer hijacking is well understood, the specific reasons behind the variation in phenotypic severity or the point at which those phenotypes become evident remain unexplored. In this work, we expand on the ectopic activation of the hindlimb-specific transcription factor Pitx1 by one of its own enhancers, Pen, in forelimb tissues that causes the Liebenberg syndrome. We combine a previously developed in-embryo cell-tracing approach to a series of inversions and relocations to show that reduction in Pitx1-Pen relative genomic positioning leads to increased proportions of Pitx1 forelimb-expressing cells and more severe phenotypical outcomes. We demonstrate that the Pitx1 locus assumes an active topology when enhancer-promoter contacts are required for transcription and that its promoter generates consistent transcription levels across different alleles. Finally, we show that changes in 3D chromatin structure and enhancer-promoter contacts are not the result of Pitx1 transcriptional activity. In summary, our work shows that variation in enhancer-promoter interactions can lead to pathogenic locus activation in variable proportions of cells which, in turn, define phenotypic severity.
Project description:Enhancer hijacking, a common cause of gene misregulation linked to disease, occurs when non-matching enhancers and promoters interact ectopically. This interaction is made possible by genetic changes that alter the arrangement or insulation of gene regulatory landscapes. While the concept of enhancer hijacking is well understood, the specific reasons behind the variation in phenotypic severity or the point at which those phenotypes become evident remain unexplored. In this work, we expand on the ectopic activation of the hindlimb-specific transcription factor Pitx1 by one of its own enhancers, Pen, in forelimb tissues that causes the Liebenberg syndrome. We combine a previously developed in-embryo cell-tracing approach to a series of inversions and relocations to show that reduction in Pitx1-Pen relative genomic positioning leads to increased proportions of Pitx1 forelimb-expressing cells and more severe phenotypical outcomes. We demonstrate that the Pitx1 locus assumes an active topology when enhancer-promoter contacts are required for transcription and that its promoter generates consistent transcription levels across different alleles. Finally, we show that changes in 3D chromatin structure and enhancer-promoter contacts are not the result of Pitx1 transcriptional activity. In summary, our work shows that variation in enhancer-promoter interactions can lead to pathogenic locus activation in variable proportions of cells which, in turn, define phenotypic severity.