Genomics

Dataset Information

0

Cohesin loss eliminates all loop domains [ChIP-Seq]


ABSTRACT: The human genome folds to create thousands of intervals, called “contact domains,” that exhibit enhanced contact frequency within themselves. “Loop domains” form because of tethering between two loci – almost always bound by CTCF and cohesin – lying on the same chromosome. “Compartment domains” form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation, but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes, and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.

ORGANISM(S): Homo sapiens

PROVIDER: GSE104888 | GEO | 2017/10/13

SECONDARY ACCESSION(S): PRJNA414094

REPOSITORIES: GEO

Similar Datasets

2017-10-05 | GSE104333 | GEO
2017-11-15 | GSE106886 | GEO
| PRJNA412386 | ENA
| PRJNA412395 | ENA
| PRJNA418323 | ENA
| PRJNA414094 | ENA
2017-06-14 | GSE97866 | GEO
2017-06-14 | GSE97870 | GEO
2017-06-14 | GSE97867 | GEO
2017-06-14 | GSE97869 | GEO