Genomics

Dataset Information

0

Identification of Molecular Pathways Affected by Pterostilbene, a Natural Dimethylether Analog of Resveratrol


ABSTRACT: Background: Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods: S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 uM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results: Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusions: Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound. Keywords: Transcript profiling, S. cerevisiae, pterostilbene

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE10554 | GEO | 2008/03/05

SECONDARY ACCESSION(S): PRJNA107803

REPOSITORIES: GEO

Similar Datasets

| E-GEOD-10554 | biostudies-arrayexpress
| E-GEOD-2412 | biostudies-arrayexpress
| E-GEOD-43690 | biostudies-arrayexpress
2017-02-24 | GSE91068 | GEO
| E-MTAB-6938 | biostudies-arrayexpress
2014-03-23 | GSE43690 | GEO
2005-05-01 | GSE2412 | GEO
2022-04-01 | GSE184094 | GEO
| E-MTAB-12860 | biostudies-arrayexpress
| E-GEOD-12147 | biostudies-arrayexpress