Transcriptomics

Dataset Information

0

Gene-specific mechanisms dictate glucocorticoid receptor-mediated repression of inflammatory response genes in macrophages [RNA-seq]


ABSTRACT: The Glucocorticoid Receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class, however, it effects repression by targeting distinct temporal events and components of transcriptional machinery

ORGANISM(S): Mus musculus

PROVIDER: GSE110243 | GEO | 2018/02/28

REPOSITORIES: GEO

Similar Datasets

2018-02-28 | GSE109131 | GEO
2011-01-19 | GSE26658 | GEO
2022-03-08 | PXD030569 | Pride
2011-01-19 | E-GEOD-26658 | biostudies-arrayexpress
2021-03-01 | GSE167092 | GEO
2021-03-01 | GSE167091 | GEO
2022-08-09 | GSE202187 | GEO
2022-08-09 | GSE202189 | GEO
2022-08-09 | GSE202184 | GEO
2020-03-09 | GSE144786 | GEO