Genomics

Dataset Information

0

Calorie Restriction Feminizes Liver Gene Expression and Alters Key Regulators of Conserved Aging Regulatory Pathways


ABSTRACT: Background: Calorie restriction (CR) is the only intervention known to extend lifespan in a wide range of organisms, including mammals. However, the mechanisms by which it regulates mammalian aging remain largely unknown and the involvement of the TOR and Sirtuin pathways (which regulate aging in lower organisms) remain controversial. Femaleness is a second phenotype generally associated with longevity but the relationship between sex-biased and CR-induced gene expression remains undetermined. Methodology/Principal Findings: We generated microarray gene expression data from livers of male mice fed high calorie or CR diets, and we find that CR significantly changes the expression of over 3,000 genes, many between 10- and 50-fold. We compare our data to the GenAge database of known aging-related genes and to prior microarray expression data of genes expressed differently between male and female mice. CR generally feminizes gene expression and many of the most significantly changed individual genes are involved in aging, hormone signaling, and p53-associated regulation of the cell cycle and apoptosis. Among the genes showing the largest and most statistically significant CR-induced expression differences are Ddit4, a key regulator of the TOR pathway, and Nnmt, a regulator of lifespan linked to the Sirtuin pathway. Using Western analyses, we confirmed post-translational inhibition of the TOR pathway. Conclusions: Our data show that CR induces widespread gene expression changes and acts through highly evolutionarily conserved pathways, from microorganisms to mammals, and that its life-extension effects might arise partly from a shift toward a gene expression profile more typical of the longer-lived female sex. Keywords: Two-class gene expression comparison. Calorie restriction (CR) versus HIGH CALORIE feeding.

ORGANISM(S): Mus musculus

PROVIDER: GSE11244 | GEO | 2008/12/31

SECONDARY ACCESSION(S): PRJNA106749

REPOSITORIES: GEO

Similar Datasets

2008-12-30 | E-GEOD-11244 | biostudies-arrayexpress
2023-10-24 | PXD033436 | Pride
2014-04-25 | E-GEOD-46895 | biostudies-arrayexpress
2014-04-25 | GSE46895 | GEO
2012-06-21 | GSE38635 | GEO
2012-06-20 | E-GEOD-38635 | biostudies-arrayexpress
2022-05-17 | GSE200820 | GEO
2022-02-15 | PXD018917 | Pride
2022-03-02 | GSE171322 | GEO
2014-09-12 | E-GEOD-61341 | biostudies-arrayexpress