Genomics

Dataset Information

0

Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells


ABSTRACT: Replicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.

ORGANISM(S): Homo sapiens

PROVIDER: GSE115666 | GEO | 2019/05/21

REPOSITORIES: GEO

Similar Datasets

2014-09-24 | E-GEOD-54766 | biostudies-arrayexpress
2014-09-24 | E-GEOD-54767 | biostudies-arrayexpress
2014-09-24 | GSE54767 | GEO
2014-09-24 | GSE54766 | GEO
2015-07-01 | E-GEOD-65172 | biostudies-arrayexpress
2022-01-22 | GSE125632 | GEO
2015-07-01 | GSE65172 | GEO
2021-05-26 | GSE116375 | GEO
2021-05-26 | GSE165603 | GEO
2015-07-01 | E-GEOD-65170 | biostudies-arrayexpress