Transcriptomics

Dataset Information

0

Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis [AGO2-RIP-Seq -miRNAs]


ABSTRACT: Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain.

ORGANISM(S): Homo sapiens

PROVIDER: GSE118302 | GEO | 2018/10/08

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2018-10-09 | GSE118315 | GEO
2018-10-08 | GSE118310 | GEO
2018-10-08 | GSE118307 | GEO
2018-10-08 | GSE118299 | GEO
2024-10-13 | PXD042371 | Pride
2021-05-25 | GSE161240 | GEO
2021-05-25 | GSE161239 | GEO
2021-05-25 | GSE161238 | GEO
2021-05-25 | GSE161237 | GEO
2022-06-02 | PXD030315 | Pride