Transcriptomics

Dataset Information

0

TFEB-driven lysosomal biogenesis is pivotal for PGC1a-dependent renal stress resistance


ABSTRACT: Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is somewhat paradoxical that proliferator gamma coactivator 1-alpha (PGC1a), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1a’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1a knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1a not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1a did not consistent affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1a in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1a’s exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance.

ORGANISM(S): Mus musculus

PROVIDER: GSE126259 | GEO | 2019/06/10

REPOSITORIES: GEO

Similar Datasets

2023-01-17 | GSE191216 | GEO
2012-06-29 | E-GEOD-35257 | biostudies-arrayexpress
2012-06-30 | GSE35257 | GEO
2013-09-30 | E-MEXP-3981 | biostudies-arrayexpress
2024-01-31 | GSE226743 | GEO
2021-07-27 | GSE142137 | GEO
2021-07-27 | GSE142134 | GEO
2020-01-07 | GSE136470 | GEO
2022-06-29 | GSE203609 | GEO
| PRJNA521410 | ENA