Genomics

Dataset Information

0

Root transcript profiles of two Rorippa (Brassicaceae) species and their F1 hybrid after complete submergence


ABSTRACT: Complete submergence represses photosynthesis and aerobic respiration causing rapid mortality in most terrestrial plants, but some species have evolved traits allowing them to survive prolonged flooding. Here, we studied the response to submergence of two species and their F1 hybrid in the genus Rorippa, which is related to the model Arabidopsis. We showed that these species have high tolerance to complete, deep submergence, but R. sylvestris survived longer than R. amphibia and the F1 hybrid. While the former restricted growth upon submergence, the latter two genotypes showed induced stem and petiole elongation and had higher aerenchyma contents, indicative of a low oxygen escape strategy. Arabidopsis GeneChip microarrays were used for whole-genome transcript profiling of roots of young plants exposed to air or a 24-h submergence treatment, using a probe mask based on hybridisation of genomic DNA of both species to the arrays. The induction by the submergence treatment of genes involved in glycolysis and fermentation and repression of many energy consuming pathways was similar to the response to low oxygen of Arabidopsis and rice. Notably, sucrose synthases, glycolysis and fermentation genes were more strongly induced in the less tolerant R. amphibia than in R. sylvestris, which might indicate faster carbohydrate consumption of the former, while some genes involved in hydrogen peroxide scavenging were strongly and specifically induced in the latter. F1 hybrids showed a generally weaker response to submergence and an additive mode of gene action, which did not change by the submergence treatment. Keywords: stress response and a comparison of genotypes

ORGANISM(S): Rorippa amphibia Rorippa sylvestris Arabidopsis thaliana Rorippa amphibia x Rorippa sylvestris

PROVIDER: GSE13641 | GEO | 2009/12/01

SECONDARY ACCESSION(S): PRJNA110189

REPOSITORIES: GEO

Similar Datasets

2009-12-04 | E-GEOD-13641 | biostudies-arrayexpress
2024-04-01 | E-MTAB-13910 | biostudies-arrayexpress
2021-06-30 | GSE160630 | GEO
2019-11-07 | GSE131682 | GEO
2009-09-01 | E-GEOD-17927 | biostudies-arrayexpress
2017-04-05 | GSE94547 | GEO
2013-12-04 | E-GEOD-52119 | biostudies-arrayexpress
2015-08-17 | GSE64742 | GEO
2015-08-17 | GSE64740 | GEO
2016-04-07 | PXD002353 | Pride