Project description:The purpose of this study was to screen pre-treatment breast cancer patients for genomic amplification of the PIK3CB gene. Keywords: comparative genomic hybridization
Project description:Ovarian cancer has the highest mortality rate among gynecologic tumors worldwide, with unclear underlying mechanisms of pathogenesis. RNA-binding proteins (RBPs) primarily direct post-transcriptional regulation through modulating RNA metabolism. Recent evidence demonstrates that RBPs are also implicated in transcriptional control. However, the role and mechanism of RBP-mediated transcriptional regulation in tumorigenesis remain largely unexplored. Here, we show that the RBP heterogeneous ribonucleoprotein L (hnRNPL) interacts with chromatin and regulates gene transcription by forming phase-separated condensates in ovarian cancer. hnRNPL phase separation activates PIK3CB transcription and glycolysis, thus promoting ovarian cancer progression. Notably, we observe that the PIK3CB promoter is transcribed to produce a non-coding RNA which interacts with hnRNPL and promotes hnRNPL condensation. Furthermore, hnRNPL is significantly amplified in ovarian cancer, and its high expression predicts poor prognosis for ovarian cancer patients. By using cell-derived xenograft and patient-derived organoid models, we show that hnRNPL knockdown suppresses ovarian tumorigenesis. Together, our study reveals that phase separation of the chromatin-associated RBP hnRNPL promotes PIK3CB transcription and glycolysis to facilitate tumorigenesis in ovarian cancer. The formed hnRNPL-PIK3CB-AKT axis depending on phase separation can serve as a potential therapeutic target for ovarian cancer.
Project description:Ovarian cancer has the highest mortality rate among gynecologic tumors worldwide, with unclear underlying mechanisms of pathogenesis. RNA-binding proteins (RBPs) primarily direct post-transcriptional regulation through modulating RNA metabolism. Recent evidence demonstrates that RBPs are also implicated in transcriptional control. However, the role and mechanism of RBP-mediated transcriptional regulation in tumorigenesis remain largely unexplored. Here, we show that the RBP heterogeneous ribonucleoprotein L (hnRNPL) interacts with chromatin and regulates gene transcription by forming phase-separated condensates in ovarian cancer. hnRNPL phase separation activates PIK3CB transcription and glycolysis, thus promoting ovarian cancer progression. Notably, we observe that the PIK3CB promoter is transcribed to produce a non-coding RNA which interacts with hnRNPL and promotes hnRNPL condensation. Furthermore, hnRNPL is significantly amplified in ovarian cancer, and its high expression predicts poor prognosis for ovarian cancer patients. By using cell-derived xenograft and patient-derived organoid models, we show that hnRNPL knockdown suppresses ovarian tumorigenesis. Together, our study reveals that phase separation of the chromatin-associated RBP hnRNPL promotes PIK3CB transcription and glycolysis to facilitate tumorigenesis in ovarian cancer. The formed hnRNPL-PIK3CB-AKT axis depending on phase separation can serve as a potential therapeutic target for ovarian cancer.
Project description:Ovarian cancer has the highest mortality rate among gynecologic tumors worldwide, with unclear underlying mechanisms of pathogenesis. RNA-binding proteins (RBPs) primarily direct post-transcriptional regulation through modulating RNA metabolism. Recent evidence demonstrates that RBPs are also implicated in transcriptional control. However, the role and mechanism of RBP-mediated transcriptional regulation in tumorigenesis remain largely unexplored. Here, we show that the RBP heterogeneous ribonucleoprotein L (hnRNPL) interacts with chromatin and regulates gene transcription by forming phase-separated condensates in ovarian cancer. hnRNPL phase separation activates PIK3CB transcription and glycolysis, thus promoting ovarian cancer progression. Notably, we observe that the PIK3CB promoter is transcribed to produce a non-coding RNA which interacts with hnRNPL and promotes hnRNPL condensation. Furthermore, hnRNPL is significantly amplified in ovarian cancer, and its high expression predicts poor prognosis for ovarian cancer patients. By using cell-derived xenograft and patient-derived organoid models, we show that hnRNPL knockdown suppresses ovarian tumorigenesis. Together, our study reveals that phase separation of the chromatin-associated RBP hnRNPL promotes PIK3CB transcription and glycolysis to facilitate tumorigenesis in ovarian cancer. The formed hnRNPL-PIK3CB-AKT axis depending on phase separation can serve as a potential therapeutic target for ovarian cancer.
Project description:HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group. Genome-wide DNA copy number profiling, using BAC array comparative genomic hybridization (aCGH) were performed on 200 tumors with mixed clinical characteristics and amplification of HER2. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number aberrations (CNAs) in HER2+ tumors. This analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
Project description:Genomic DNA copy number alterations are key genetic events in the development and progression of human cancers. Here we report a genome-wide microarray comparative genomic hybridization (array CGH) analysis of DNA copy number variation in a series of primary human breast tumors. We have profiled DNA copy number alteration across 6,691 mapped human genes, in 44 predominantly advanced, primary breast tumors and 10 breast cancer cell lines. While the overall patterns of DNA amplification and deletion corroborate previous cytogenetic studies, the high-resolution (gene-by-gene) mapping of amplicon boundaries and the quantitative analysis of amplicon shape provide significant improvement in the localization of candidate oncogenes. Parallel microarray measurements of mRNA levels reveal the remarkable degree to which variation in gene copy number contributes to variation in gene expression in tumor cells. Specifically, we find that 62% of highly amplified genes show moderately or highly elevated expression, that DNA copy number influences gene expression across a wide range of DNA copy number alterations (deletion, low-, mid- and high-level amplification), that on average, a 2-fold change in DNA copy number is associated with a corresponding 1.5-fold change in mRNA levels, and that overall, at least 12% of all the variation in gene expression among the breast tumors is directly attributable to underlying variation in gene copy number. These findings provide evidence that widespread DNA copy number alteration can lead directly to global deregulation of gene expression, which may contribute to the development or progression of cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set, arrayCGH
Project description:Genomic DNA copy number alterations are key genetic events in the development and progression of human cancers. Here we report a genome-wide microarray comparative genomic hybridization (array CGH) analysis of DNA copy number variation in a series of primary human breast tumors. We have profiled DNA copy number alteration across 6,691 mapped human genes, in 44 predominantly advanced, primary breast tumors and 10 breast cancer cell lines. While the overall patterns of DNA amplification and deletion corroborate previous cytogenetic studies, the high-resolution (gene-by-gene) mapping of amplicon boundaries and the quantitative analysis of amplicon shape provide significant improvement in the localization of candidate oncogenes. Parallel microarray measurements of mRNA levels reveal the remarkable degree to which variation in gene copy number contributes to variation in gene expression in tumor cells. Specifically, we find that 62% of highly amplified genes show moderately or highly elevated expression, that DNA copy number influences gene expression across a wide range of DNA copy number alterations (deletion, low-, mid- and high-level amplification), that on average, a 2-fold change in DNA copy number is associated with a corresponding 1.5-fold change in mRNA levels, and that overall, at least 12% of all the variation in gene expression among the breast tumors is directly attributable to underlying variation in gene copy number. These findings provide evidence that widespread DNA copy number alteration can lead directly to global deregulation of gene expression, which may contribute to the development or progression of cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Using regression correlation
Project description:HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group. Genome-wide DNA copy number profiling, using BAC array comparative genomic hybridization (aCGH) were performed on 200 tumors with mixed clinical characteristics and amplification of HER2. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number aberrations (CNAs) in HER2+ tumors. This analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer. Genomic profiling of 200 breast tumors using tiling BAC aCGH (32K, 33K and 38K). A number of cases were hybridized as replicates or dye-swaps.