Transcriptomics

Dataset Information

0

Hyperosmotic stress induces downstream-of-gene transcription and alters the RNA Polymerase II interactome despite widespread transcriptional repression


ABSTRACT: Stress-induced readthrough transcription results in the synthesis of thousands of downstream-of-gene (DoG) containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse-seq revealed that hyperosmotic stress induces widespread transcriptional repression. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP-seq confirmed that the stress-induced redistribution of RNA Polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While subunits of the cleavage and polyadenylation machinery remained Pol II-associated, Integrator complex subunits dissociated from Pol II under stress conditions. Depleting the catalytic subunit of the Integrator complex, Int11, using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription. This SuperSeries is composed of the SubSeries listed below.

ORGANISM(S): Homo sapiens

PROVIDER: GSE152063 | GEO | 2021/01/04

REPOSITORIES: GEO

Similar Datasets

2017-08-31 | GSE98906 | GEO
2021-01-04 | GSE152059 | GEO
2020-10-06 | GSE150844 | GEO
2022-08-09 | PXD035866 | iProX
2022-05-18 | GSE197372 | GEO
2014-07-24 | E-GEOD-56435 | biostudies-arrayexpress
2022-03-03 | PXD031531 | Pride
2020-10-14 | PXD015158 | Pride
2019-11-27 | GSE114467 | GEO
2022-08-09 | GSE179965 | GEO