SWR1-independent association of H2A.Z to the LINC complex promotes meiotic chromosome motion
Ontology highlight
ABSTRACT: The H2A.Z histone variant is deposited into chromatin by the SWR1 complex affecting multiple aspects of meiosis. Here we describe a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the LINC complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during meiotic prophase I is reduced in the htz1? mutant lacking H2A.Z, but it is unaffected in swr1? cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.
Project description:Chromosomes pair and synapse with their homologous partners to segregate correctly at meiosis I. Association of telomeres with the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex enables telomere-led chromosome movements and telomere bouquet formation, facilitating precise pairwise alignment of homologs. Here, we identify a direct interaction between SUN1 and Speedy A (SPDYA) and determine the crystal structure of human SUN1-SPDYA-CDK2 ternary complex. Analysis of meiosis prophase I process in SPDYA-binding-deficient SUN1 mutant mice reveals that the SUN1-SPDYA interaction is required for the telomere-LINC complex connection and the assembly of a ring-shaped telomere supramolecular architecture at the nuclear envelope, which is critical for efficient homologous pairing and synapsis. Overall, our results provide structural insights into meiotic telomere structure that is essential for meiotic prophase progression.
Project description:SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via carboxy-terminal SUN-KASH domains to form the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes sustain numerous biological processes by connecting chromatin with the cytoplasmic force generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled coil domain makes SUN-1 sensitive to unilateral force generation across the nuclear membrane. However, absence of this domain does not lead to different expression levels of sun-1 and other known meiotic genes in the mutant compared to wild type. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in their absence.
Project description:During meiosis, chromosomes undergo extensive changes in structure and intranuclear positioning. How these chromosome organization changes occur and how they influence meiosis-specific chromosome events are not fully understood. Using Hi-C, we characterized chromosome architecture throughout mouse spermatogenesis at high temporal resolution. Our study revealed an intimate link between chromosome organization features and homolog pairing and alignment. We found that the meiotic chromosomes progressively reshape from TAD-like domains into linearly arranged loop arrays during prophase I. The transcriptionally active and inactive genomic regions exhibit distinct dynamics of loop growth, resulting in alternating domains consisting of shorter and longer chromosome loops. Such a domanial organization along meiotic chromosome axes is tightly correlated with the strength and precision of inter-homolog alignment. We further showed that a significant fraction of chromosomes near chromosome ends exhibit elevated inter-chromosomal association upon entering zygotene stage, while also exhibiting a higher degree of inter-homolog alignment. Using a mouse model defective in LINC complex component SUN1, we demonstrated that the prominent alignment of chromosome ends is dependent on the association of telomeres with the mechano-transducing LINC complex, but not the tethering of telomeres to the nuclear periphery. Taken together, our results suggest the 3D chromosome organization may provide a structural framework for the regulation of meiotic chromosome processes in higher eukaryotes.
Project description:During meiosis, chromosomes undergo extensive changes in structure and intranuclear positioning. How these chromosome organization changes occur and how they influence meiosis-specific chromosome events are not fully understood. Using Hi-C, we characterized chromosome architecture throughout mouse spermatogenesis at high temporal resolution. Our study revealed an intimate link between chromosome organization features and homolog pairing and alignment. We found that the meiotic chromosomes progressively reshape from TAD-like domains into linearly arranged loop arrays during prophase I. The transcriptionally active and inactive genomic regions exhibit distinct dynamics of loop growth, resulting in alternating domains consisting of shorter and longer chromosome loops. Such a domanial organization along meiotic chromosome axes is tightly correlated with the strength and precision of inter-homolog alignment. We further showed that a significant fraction of chromosomes near chromosome ends exhibit elevated inter-chromosomal association upon entering zygotene stage, while also exhibiting a higher degree of inter-homolog alignment. Using a mouse model defective in LINC complex component SUN1, we demonstrated that the prominent alignment of chromosome ends is dependent on the association of telomeres with the mechano-transducing LINC complex, but not the tethering of telomeres to the nuclear periphery. Taken together, our results suggest the 3D chromosome organization may provide a structural framework for the regulation of meiotic chromosome processes in higher eukaryotes.
Project description:Transcriptionally silent heterochromatin preferentially localizes at the nuclear periphery, but, despite this, certain budding yeast genes relocate to the nuclear periphery following gene activation, implicating the nuclear envelope in both transcriptional activation and silencing. It is unclear how these distinct chromatin domains are established, maintained and distinguished from one another at the nuclear envelope. Here we report that nuclear pore complexes (NPCs) facilitate the transition between chromatin states by providing a platform to which chromatin-remodeling and chromatin-modifying complexes bind. In particular, we show that the RSC chromatin-remodeling complex associates with NPCs and that the nucleoporin Nup170p nucleates heterochromatin formation at telomeres through recruitment of Sir4p. Deletion of NUP170 altered subtelomeric chromatin structure, reduced SIR complex binding at telomeres, impaired telomeric silencing and abated telomere tethering. These results support a model in which telomeric heterochromatin formation occurs through telomere-NPC interactions that both promote Sir4p binding at telomeres and permit chromatin-remodeling complexes to mediate the transition between chromatin states. Examination of genome-wide nucleosome positions in WT and nup170∆ cells via next-generation sequencing of mononucleosomal DNA.
Project description:Transcriptionally silent heterochromatin preferentially localizes at the nuclear periphery, but, despite this, certain budding yeast genes relocate to the nuclear periphery following gene activation, implicating the nuclear envelope in both transcriptional activation and silencing. It is unclear how these distinct chromatin domains are established, maintained and distinguished from one another at the nuclear envelope. Here we report that nuclear pore complexes (NPCs) facilitate the transition between chromatin states by providing a platform to which chromatin-remodeling and chromatin-modifying complexes bind. In particular, we show that the RSC chromatin-remodeling complex associates with NPCs and that the nucleoporin Nup170p nucleates heterochromatin formation at telomeres through recruitment of Sir4p. Deletion of NUP170 altered subtelomeric chromatin structure, reduced SIR complex binding at telomeres, impaired telomeric silencing and abated telomere tethering. These results support a model in which telomeric heterochromatin formation occurs through telomere-NPC interactions that both promote Sir4p binding at telomeres and permit chromatin-remodeling complexes to mediate the transition between chromatin states.
Project description:Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or no H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction. Total nucleosomes from MNase-treated nuclear extracts were fractionated by sequential immunoprecipitation into homotypic H2A/H2A (AA), heterotypic H2A/H2A.Z (AZ), and homotypic H2A.Z/H2A.Z (ZZ) nucleosomes.
Project description:Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Checkpoints implement termination of these events when all chromosomes achieve synapsis and form crossover precursors, ensuring meiotic progression. We show that termination of chromosome movement and DSB formation is reversible and is continuously implemented by the synaptonemal complex (SC), which silences chromosome signals that promote CHK-2 activity. Forced removal of the SC or different meiosis-specific cohesin complexes, which are individually required for SC stability, causes rapid CHK-2-dependent reinstallation of the DSB-formation and chromosome-movement machinery. This nuclear reorganization occurs without transcriptional changes, but requires signalling from HORMA protein HTP-1. Conversely, CHK-2 inactivation causes rapid disassembly of the DSB-formation and chromosome-movement machinery. Thus, nuclear organization is constantly controlled by the level of CHK-2 activity. Our results uncover an unexpected plasticity of the meiotic program and show how chromosome signalling integrates nuclear organization with meiotic progression.
Project description:Faithful meiotic segregation requires pairwise alignment of the homologous chromosomes and Synaptonemal Complex assembly (SC) at their interface. Here, we investigate on new factors that promote and coordinate these events during C. elegans meiosis. We identify BRA-2 (BMP Receptor Associated family member 2) as an interactor of HIM-17, previously shown to promote double-strand break formation. We found that loss of bra-2 specifically impairs synapsis licensing without affecting homologs recognition, SC maintenance or chromosome movement. Double mutant analysis revealed a previously unrecognized role for HIM-17 in promoting homolog pairing under dysfunctional SC assembly, without perturbing nuclear envelope recruitment of factors required for chromosome movement. We provide evidence that bra-2 and him-17 act in distinct pathways, exerting partially redundant functions in SC licensing, as well as separable roles in regulating homologs pairing. Altogether, our findings unveil novel mechanisms that ensure stabilization of homologous chromosome interaction via SC licensing upon homology assessment.