Genomics

Dataset Information

0

Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos


ABSTRACT: Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, xenobiotic metabolism general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.

ORGANISM(S): Sus scrofa

PROVIDER: GSE155043 | GEO | 2021/01/30

REPOSITORIES: GEO

Similar Datasets

2023-03-11 | PXD035294 | Pride
2014-01-30 | E-GEOD-49391 | biostudies-arrayexpress
2011-02-17 | E-GEOD-25606 | biostudies-arrayexpress
2012-03-31 | E-GEOD-35025 | biostudies-arrayexpress
2022-05-20 | PXD030994 | Pride
2011-03-08 | E-GEOD-27817 | biostudies-arrayexpress
2023-10-26 | GSE239894 | GEO
2011-02-17 | GSE25606 | GEO
2017-03-23 | GSE96925 | GEO
2006-08-23 | E-GEOD-5571 | biostudies-arrayexpress