Genome-wide DNA methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry
Ontology highlight
ABSTRACT: This SuperSeries is composed of the SubSeries listed below.
Project description:Aggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, few studies have specifically characterized genome-wide DNA methylation-based modifications at the miRNA level in relation to ER+ and ER- subtype, and their functional role in the regulation of miRNA expression, especially among high risk AA women. In this study, we evaluated DNA methylation patterns of miRNA encoding genes and their effect on expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a total of 7,191 unique CpGs mapped to 1,292 miRNA genes, corresponding to 2,035 unique mature miRNAs. We identified differentially methylated loci (DMLs: (|delta β|)>0.10, FDR<0.05) between ER- and ER+ tumor subtypes, including 290 DMLs shared in both races, 317 and 136 were specific to AA and EA women, respectively. Integrated analysis identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs within miR-190b and miR-135b highly negatively correlated with their expression. These results were then validated in the TCGA dataset. Target prediction and pathway analysis showed that these DNA methylation-dysregulated miRNAs are involved in multiple cancer-related pathways, including cell cycle G1-S growth factor regulation, cytoskeleton remodeling, angiogenesis, EMT, and ESR1-mediated signaling pathways. In summary, our results suggest that DNA methylation changes within miRNA genes are associated with altered miRNA expression, which may contribute to the network of subtype- and race-related tumor biological differences in breast cancer. These findings support the involvement of epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes, which may serve as potential preventative and therapeutic targets.
Project description:We reAggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). The reasons remain largely unknown. Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, the characterization of this epigenetic modification in relation to ER+ and ER- breast cancer, and its functional role in the regulation of miRNA expression remains to be investigated, especially among high risk AA women. In this study, we evaluated methylation patterns of miRNA genes and their effect on miRNA expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a number of differentially methylated loci (DML) between ER- and ER+ tumor subtypes in tumors from both races, or specific to AA or EA women. Integrated analysis of DNA methylation and miRNA expression further identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs highly correlated with miR-190b and miR-135b. In summary, our results suggest that DNA methylation patterns in miRNA encoding genes differ between breast cancers according to cancer subtype and race, and that this altered methylation may affect miRNA expression. Further pathway analysis identified their potential role in modulating cancer-related key biological processes. These findings shed light on the epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes and to serve as potential preventative and therapeutic targets. port the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations.
Project description:We reAggressive high-grade, estrogen receptor negative (ER-) breast cancer is more common among American women of African ancestry (AA) than those of European ancestry (EA). The reasons remain largely unknown. Epigenetic mechanisms, particularly DNA methylation and altered microRNA (miRNA) expression, may contribute to racial differences in breast cancer. However, the characterization of this epigenetic modification in relation to ER+ and ER- breast cancer, and its functional role in the regulation of miRNA expression remains to be investigated, especially among high risk AA women. In this study, we evaluated methylation patterns of miRNA genes and their effect on miRNA expression in breast tumors from both AA and EA women. The genome-wide methylation screen identified a number of differentially methylated loci (DML) between ER- and ER+ tumor subtypes in tumors from both races, or specific to AA or EA women. Integrated analysis of DNA methylation and miRNA expression further identified certain DMLs whose methylation levels were significantly correlated with the expression of relevant miRNAs, such as multiple CpGs highly correlated with miR-190b and miR-135b. In summary, our results suggest that DNA methylation patterns in miRNA encoding genes differ between breast cancers according to cancer subtype and race, and that this altered methylation may affect miRNA expression. Further pathway analysis identified their potential role in modulating cancer-related key biological processes. These findings shed light on the epigenetic regulation of miRNA expression and provide insights into the relations of clinical-relevant miRNAs to their target genes and to serve as potential preventative and therapeutic targets. port the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations.
Project description:MicroRNAs (miRNAs) are an integral part of the post-transcriptional machinery of gene expression and have been implicated in the carcinogenic cascade. Single nucleotide polymorphisms (SNPs) in miRNAs and risk of breast cancer have been evaluated in populations of European or Asian ancestry, but not among women of African ancestry. Here we examined 145 SNPs in six miRNA processing genes and in 78 miRNAs which target genes known to be important in breast cancer among 906 African American (AA) and 653 European American (EA) cases and controls enrolled in the Women's Circle of Health Study. Allele frequencies of most SNPs (87 %) differed significantly by race. We found a number of SNPs in miRNAs and processing genes in association with breast cancer overall or stratified by estrogen receptor (ER) status. Several associations were significantly different by race, with none of the associations being significant in both races. Using a polygenic risk score to combine the effects of multiple SNPs, we found significant associations with the score in each subgroup analysis. For ER-positive cancer, each unit increment of the risk score was associated with a 51 % increased risk in AAs (OR = 1.51, 95 % CI = 1.30-1.74, p = 3.3 × 10(-8)) and a 73 % increased risk in EAs (OR = 1.73, 95 % CI = 1.45-2.06, p = 1.4 × 10(-9)). These data show, for the first time, that miRNA-related genetic variations may underlie the etiology of breast cancer in both populations of African and European ancestries. Future studies are needed to validate our findings and to explore the underlying mechanisms.
Project description:Genome-wide DNA methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry
Project description:American women of African ancestry (AA) are more likely than European-Americans (EA) to be diagnosed with aggressive, estrogen receptor (ER) negative breast tumors; mechanisms underlying these disparities are poorly understood. We conducted a genome wide (450K loci) methylation analysis to determine if there were differences in DNA methylation patterns between tumors from AA and EA women and if these differences were similar for both ER positive and ER negative breast cancer. Methylation levels at CpG loci within CpG islands (CGI)s and CGI-shores were significantly higher in tumors (n=138) than in reduction mammoplasty samples (n=124). In hierarchical cluster analysis, there was separation between tumor and normal samples, and in tumors, there was delineation by ER status, but not by ancestry. However, differential methylation analysis identified 157 CpG loci with a mean ? value difference of at least 0.17 between races, with almost twice as many differences in ER-negative tumors compared to ER-positive cancers. This first genome-wide methylation study to address disparities indicates that there are likely differing etiologic pathways for the development of ER negative breast cancer between AA and EA women. Further investigation of the genes most differentially methylated by race in ER negative tumors can guide new approaches for cancer prevention and targeted therapies, and elucidate the biologic basis of breast cancer disparities.
Project description:Differences in microRNAs have not been well studied as potential mechanisms underlying the breast cancer disparity. A number of miRNAs were differentially expressed not only by tumor subtype but by ancestry, indicating differences in tumor biology of breast cancer between women of African and European ancestry. Findings may contribute to a better understanding of the biology of breast cancer disparities and help develop more targeted preventative and therapeutic strategies.
Project description:Genome-wide DNA methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry [miRNA-seq]
Project description:Genome-wide DNA methylation and expression patterns of microRNAs in relation to breast cancer subtypes among American women of African and European ancestry [methylation array]
Project description:Characterization of ancestry-linked peptide variants in disease-relevant patient tissues represents a foundational step to connect patient ancestry with molecular disease pathogenesis. Nonsynonymous single nucleotide polymorphisms (SNPs) encoding missense substitutions within tryptic peptides exhibiting high allele frequencies in European, African, and East Asian populations, termed peptide ancestry informative markers (pAIMs), were prioritized from 1000 genomes. In silico analysis shows that as few as 20 pAIMs can determine ancestry proportions similarly to >260K SNPs (R2=0.9905). Multiplexed proteomic analysis of >100 human endometrial cancer cell lines and uterine leiomyoma (ULM) tissues combined resulted in the quantitation of 62 pAIMs that correlate with self-described race and genotype-confirmed patient ancestry. Candidates include a D451E substitution in GC vitamin D-binding protein previously associated with altered vitamin D levels in African and European populations. These efforts describe a generalized set of markers for proteoancestry assessment that will further support studies investigating the impact of ancestry on the human proteome and how this relates to the pathogenesis of uterine neoplasms.