Transcriptomics

Dataset Information

0

The role of Salmonella Genomic Island 4 in metal tolerance of Salmonella enterica serovar I 4,[5],12:i:- pork outbreak isolate USDA15WA-1


ABSTRACT: Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of numerous metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2,000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for 4 weeks prior to and 3 weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.

ORGANISM(S): Salmonella enterica

PROVIDER: GSE159054 | GEO | 2020/12/08

REPOSITORIES: GEO

Similar Datasets

2017-07-24 | GSE94314 | GEO
2022-02-10 | PXD019288 | Pride
2012-03-15 | E-GEOD-35328 | biostudies-arrayexpress
2014-03-01 | E-GEOD-54738 | biostudies-arrayexpress
2014-03-01 | E-GEOD-54736 | biostudies-arrayexpress
2012-05-01 | GSE37661 | GEO
2012-08-01 | GSE13546 | GEO
2008-06-09 | GSE7666 | GEO
2008-06-09 | GSE7667 | GEO
2022-06-11 | MSV000089630 | MassIVE