Transcriptomics

Dataset Information

0

Single cell RNA sequencing of P6 and P15 retinal endothelial cells


ABSTRACT: Formation and maturation of a functional blood vascular system is required for the development and maintenance of all tissues in the body. During the process of blood vessel development, primordial endothelial cells are formed and become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Specification of arterial and venous endothelial cells occurs in conjunction with suppression of endothelial cell cycle progression, and endothelial cell hyperproliferation is associated with potentially lethal arterial-venous malformations. However, the mechanistic role that cell cycle state plays in arterial-venous specification is unknown. Herein, studying retinal vascular development in Cdh5-CreERT2;R26FUCCI2aR reporter mice, we found that venous and arterial endothelial cells are in distinct cell cycle states during development and in adulthood. That is, venous endothelial cells reside in early G1 state, while arterial endothelial cells reside in late G1 state. Single cell RNA sequencing of developing retinal endothelial cells revealed that BMP signaling and early G1 state are enriched in venous endothelial cells, while TGF-b signaling and late G1 state are enriched in arterial endothelial cells. Cultured endothelial cells in early vs. late G1 exhibited significant differences in gene expression and activity, especially among BMP/TGF-b signaling components. The early G1 state was found to be essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-b1-induced arterial gene expression. In a mouse model of endothelial cell hyperproliferation and disrupted arterial-venous specification, pharmacological inhibition of endothelial cell cycle prevented the vascular defects. Collectively, our results show that endothelial cell cycle control plays a key role in arterial-venous network formation, and distinct cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous specification.

ORGANISM(S): Mus musculus

PROVIDER: GSE169039 | GEO | 2022/08/22

REPOSITORIES: GEO

Similar Datasets

2022-08-28 | GSE211958 | GEO
2022-08-22 | GSE211658 | GEO
2023-12-31 | GSE245197 | GEO
2022-10-12 | PXD036326 | Pride
2024-01-25 | GSE247450 | GEO
2016-07-03 | E-GEOD-66073 | biostudies-arrayexpress
2023-12-30 | GSE244923 | GEO
| PRJNA670206 | ENA
2016-01-01 | GSE66073 | GEO
2011-01-11 | E-MTAB-494 | biostudies-arrayexpress