Genomics

Dataset Information

0

Cohesin regulates homology search during recombinational DNA repair [Hi-C]


ABSTRACT: Homologous recombination (HR) is an ubiquitous DNA double-strand break (DSB) repair mechanism. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA nucleoprotein filament (NPF) assembled on each DSB ends. In contrast to the extensive knowledge of DNA damage checkpoint (DDC)-induced changes in chromatin composition and mobility,  the questions of if, how, and to what extent a DSB impacts the spatial organization of chromatin, and whether this organization in turn influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in S. cerevisiae. While cohesin folds chromosomes into cohesive arrays of ~20 kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during HR repair. 

ORGANISM(S): Saccharomyces cerevisiae W303

PROVIDER: GSE179641 | GEO | 2021/07/21

REPOSITORIES: GEO

Similar Datasets

2021-07-21 | GSE179638 | GEO
2013-03-21 | E-GEOD-44844 | biostudies-arrayexpress
| PRJNA744464 | ENA
2022-01-17 | GSE126546 | GEO
2023-03-31 | GSE227944 | GEO
2013-03-21 | GSE44844 | GEO
2014-03-23 | E-MTAB-1241 | biostudies-arrayexpress
2022-02-17 | PXD028946 | Pride
2015-02-19 | GSE66062 | GEO
| PRJNA647790 | ENA