Genomics

Dataset Information

0

Role of 53BP1 in End Protection and DNA synthesis at DNA breaks [END-seq]


ABSTRACT: Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.

ORGANISM(S): Mus musculus

PROVIDER: GSE181669 | GEO | 2021/09/10

REPOSITORIES: GEO

Similar Datasets

2021-09-10 | GSE181668 | GEO
2021-09-10 | GSE181667 | GEO
2023-03-11 | PXD031357 | Pride
2019-10-22 | GSE133806 | GEO
2022-05-16 | GSE186085 | GEO
2013-03-01 | E-GEOD-42298 | biostudies-arrayexpress
2014-12-03 | E-GEOD-62534 | biostudies-arrayexpress
2022-05-11 | GSE202567 | GEO
2022-05-16 | GSE186086 | GEO
2019-10-22 | GSE133805 | GEO