Project description:1. Evaluate the diagnostic value of long noncoding RNA (CCAT1) expression by RT-PCR in peripheral blood in colorectal cancer patients versus normal healthy control personal.
2. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in diagnosis of colorectal cancer patients & its relation to tumor staging.
3. Evaluate the clinical utility of detecting long noncoding RNA (CCAT1) expression in precancerous colorectal diseases.
4. Compare long noncoding RNA (CCAT1) expression with traditional marker; carcinoembryonic antigen (CEA) and Carbohydrate antigen 19-9 (CA19-9) in diagnosis of colorectal cancer.
Project description:The eukaryotic RNA processing factor Y14 participates in double-strand break (DSB) repair via its RNA-dependent interaction with the non-homologous end-joining (NHEJ) complex. We identified the long non-coding RNA HOTAIRM1 as a candidate that mediates this interaction. HOTAIRM1 localized to DNA damage sites induced by ionizing radiation. Depletion of HOTAIRM1 delayed the recruitment of DNA damage response and repair factors to DNA lesions and reduced DNA repair efficiency. Identification of the HOTAIRM1 interactome revealed a large set of RNA processing factors including mRNA surveillance factors. The surveillance factors Upf1 and SMG6 localized to DNA damage sites in a HOTAIRM1-dependent manner. Depletion of Upf1 or SMG6 increased the level of DSB-induced non-coding transcripts at damaged sites, indicating a pivotal role for Upf1/SMG6-mediated RNA degradation in DNA repair. We conclude that HOTAIRM1 serves as an assembly scaffold for both DNA repair and RNA processing factors that act in concert to repair DSBs.
Project description:At critically short telomeres TERRA RNA-DNA hybrids become stabilized and drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. Here, we report that hybrids at telomeres prevent resection by the Exo1 nuclease when telomeres become non-functional. We employed the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. These results give insights into an additional role of TERRA at dysfunctional telomeres suggesting that it not only affects replicative senescence rates through HDR activation at critically short telomeres, but may also affect resection rates at intermediate length telomeres in pre-senescent cells.
Project description:RNA-directed DNA methylation (RdDM) is a transcriptional silencing mechanism mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1a (TOP1a) was able to de-repress LUCL by reducing its DNA methylation and H3K9 dimethylation (H3K9me2) levels. Further studies with Arabidopsis top1a mutants showed that TOP1a promotes RdDM by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at transposable elements (TEs). 5 small RNA libraries were sequenced
Project description:The biotin labeled DNA:RNA hybrids with or without RNA m5C modification were incubated with lysates of 293 cells treated with H2O2, and were pulled down by Streptavidin. The proteins pulled down by the empty beads control, unmodified or m5C-modified hybrids were analyzed by mass spectrometry
Project description:The m6A reader IGF2BP2 and helicase DHX9 collaborate to remove DNA-RNA hybrids at DSB sites. This action facilitates RAD51 loading and homologous recombination, influencing cancer cell responses to DNA damage therapies.
Project description:Proteins in Nicotiana benthamiana interacted with RNA fragment (or signal sequences) involving small-RNA accumulation selectivity, were trapped and analyzed.
Project description:RNA-directed DNA methylation (RdDM) is a transcriptional silencing mechanism mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1a (TOP1a) was able to de-repress LUCL by reducing its DNA methylation and H3K9 dimethylation (H3K9me2) levels. Further studies with Arabidopsis top1a mutants showed that TOP1a promotes RdDM by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at transposable elements (TEs).