Genomics

Dataset Information

0

A transcriptomic approach to elucidate apricot fruit development using an oligonucleotide peach microarray


ABSTRACT: The aim of this study was to elucidate the potential use of microarray technology, developed in model species, in related, yet phenotypically distinct, species where few or no information are available. Considering the high degree of sequence conservation within the Rosaceae family and, in particular, among the Prunus species we employed the first available peach oligonucleotide microarray (µPEACH 1.0) for studying the transcrptomic profile during apricot fruit development (Prunus armeniaca L., cv. 'Goldrich'). Fruit material was harvested at three distinct stages, corresponding to immature-green stage (6 weeks before fully-ripe stage), mature-firm-ripe stage (change of peel color, 1 week before fully-ripe stage) and at fully-ripe stage and designated as S1, S2 and S3 stages, respectively. Apricot targets cDNA, when applied the µPEACH1.0, were showing significant hybridization with an average of 43% of spotted targets validating the use of μPEACH1.0 to profile the transcriptome of apricot fruit during development and ripening. Microarray analysis carried out on immature and ripe peach and apricot fruit separately pointed out that 70% of genes differentially expressed was detectable the same pattern of expression in both species. This result indicates that the transcriptome of immature and ripe fruit are quite similar in apricot and peach, but also highlighted the presence of transcript changes specie-specific. When μPEACH1.0 was used to profile apricot developing fruit were identified 400 and 74 genes differetially expressed during the transition from S1 to S2 stage and from S2 to S3 stage, respectively. Intriguingly, a considerable number of auxin action regulators (AUX/IAA) and of genes coding heat shock proteins (hsp) were highly up-regulated at the onset and late of ripening phase, respectively.The comparison between the expression profiles of these apricot genes and their peach hortologues showed a similar pattern for AUX/IAA and quite different for hsps. This result suggests a similar role for AUX/IAA in both species and a more important involvement for hsps in the apricot fruit ripening.

ORGANISM(S): Prunus persica Prunus armeniaca

PROVIDER: GSE19828 | GEO | 2011/01/12

SECONDARY ACCESSION(S): PRJNA122161

REPOSITORIES: GEO

Similar Datasets

2011-06-27 | E-GEOD-22582 | biostudies-arrayexpress
2011-06-27 | GSE22582 | GEO
2013-03-27 | GSE45490 | GEO
2013-03-27 | E-GEOD-45490 | biostudies-arrayexpress
2013-11-25 | E-MTAB-1837 | biostudies-arrayexpress
2017-11-30 | GSE71561 | GEO
2020-04-08 | GSE148217 | GEO
2020-11-25 | MSV000086519 | MassIVE
2009-06-01 | E-GEOD-14637 | biostudies-arrayexpress
2011-08-26 | GSE18280 | GEO