Genomics

Dataset Information

0

Profiling of cutaneous tumors


ABSTRACT: Metastasis and drug-resistance are major problems in cancer chemotherapy. The purpose of this work was to analyze the molecular mechanisms underlying the invasive potential of drug-resistant colon carcinoma cells. Cellular models included the parental HT-29 cell line and its drug-resistant derivatives selected after chronic treatment with either 5-fluorouracil (5-FU), methotrexate (MTX), doxorubicin (DOX) or oxaliplatin (OXA). Drug-resistant invasive cells were compared to non invasive cells using cDNA microarray, qRT-PCR, flow cytometry, immunoblots and ELISA. Functional and cellular signaling analyses were undertaken using pharmacological inhibitors, function-blocking antibodies, and silencing by retrovirus-mediated RNA interference. 5-FU- and MTX-resistant HT-29 cells expressing an invasive phenotype in collagen type I and a metastatic behaviour in immunodeficient mice exhibited high expression of the chemokine receptor CXCR4. Macrophage migration inhibitory factor (MIF) was identified as the critical autocrine CXCR4 ligand promoting invasion in drug-resistant colon carcinoma HT-29 cells. Silencing of CXCR4 and impairing the MIF-CXCR4 signaling pathways by ISO-1, pAb FL-115, AMD-3100, mAb 12G5, and BIM-46187 abolished this aggressive phenotype. Induction of CXCR4 is associated with up-regulation of two genes encoding transcription factors previously shown to control CXCR4 expression (HIF-2a and ASCL2) and maintenance of intestinal stem cells (ASCL2). Enhanced CXCR4 expression was detected in liver metastases resected from colon cancer patients treated by the standard FOLFOX regimen. Combination therapies targeting the CXCR4-MIF axis can potentially counteract the emergence of the invasive metastatic behaviour in clonal derivatives of drug-resistant colon cancer cells.

ORGANISM(S): Mus musculus Homo sapiens

PROVIDER: GSE20147 | GEO | 2010/07/07

SECONDARY ACCESSION(S): PRJNA125569

REPOSITORIES: GEO

Similar Datasets

2010-07-07 | E-GEOD-20147 | biostudies-arrayexpress
2012-01-07 | E-GEOD-34926 | biostudies-arrayexpress
2012-01-07 | GSE34926 | GEO
2017-01-14 | GSE93620 | GEO
2012-08-23 | E-GEOD-23433 | biostudies-arrayexpress
2013-05-29 | E-GEOD-28547 | biostudies-arrayexpress
| PRJNA360431 | ENA
2009-09-08 | E-GEOD-16066 | biostudies-arrayexpress
2008-10-25 | E-GEOD-11440 | biostudies-arrayexpress
2013-05-29 | GSE28547 | GEO