Sen1 and Rrm3 ensure permissive topological conditions for replication termination [ChIP-chip]
Ontology highlight
ABSTRACT: Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetic, genomic and imaging approaches we found that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs, Sen1 at telomeres. rrm3 and sen1 are synthetic lethal, fail to terminate replication exhibiting lagging chromosomes and fragility at TERs and telomeres. sen1 rrm3 build up RNA-DNA hybrids at TERs, sen1 accumulates RNPII at TERs and telomeres. Double mutants exhibit X-shaped gapped or reversed converging forks. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of fork-associated Top1 and Top2 with those of gene loop-associated Top1 and Top2 by preventing DNA and RNA polymerases slowing down when forks encounter transcription head-on or codirectionally, respectively. Hence Rrm3 and Sen1 are essential to generate permissive topological conditions for replication termination.
Project description:Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetic, genomic and imaging approaches we found that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs, Sen1 at telomeres. rrm3 and sen1 are synthetic lethal, fail to terminate replication exhibiting lagging chromosomes and fragility at TERs and telomeres. sen1 rrm3 build up RNA-DNA hybrids at TERs, sen1 accumulates RNPII at TERs and telomeres. Double mutants exhibit X-shaped gapped or reversed converging forks. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of fork-associated Top1 and Top2 with those of gene loop-associated Top1 and Top2 by preventing DNA and RNA polymerases slowing down when forks encounter transcription head-on or codirectionally, respectively. Hence Rrm3 and Sen1 are essential to generate permissive topological conditions for replication termination.
Project description:[original title] Chromosome replication initiates at multiple replicons and terminates when forks converge. In Escherichia coli, the Tus-TER complex mediates polar fork converging at the terminator region and aberrant termination events challenge chromosome integrity and segregation. Since in eukaryotes termination is less characterized, we used budding yeast to identify the factors assisting fork fusion at replicating chromosomes. Using genomic and mechanistic studies we have identified and characterized 71 chromosomal termination regions (TERs). TERs contain fork pausing elements that influence fork progression and merging. The Rrm3 DNA helicase assists fork progression across TERs counteracting the accumulation of X-shaped structures. The Top2 DNA topoisomerase associates at TERs in S-phase and G2/M facilitates fork fusion and prevents DNA breaks and genome rearrangements at TERs. We propose that in eukaryotes replication fork barriers, Rrm3 and Top2 coordinate replication fork progression and fusion at termination regions thus counteracting abnormal genomic transitions. Signal tracks in BED format suitable for visualization on the UCSC genome browser can be found at http://bio.ifom-ieo-campus.it/supplementary/Fachinetti_et_al_MOLCELL_2010
Project description:Replication forks temporarily or terminally pause at hundreds of hard-to-replicate regions around the genome. A conserved pair of budding yeast replisome components Tof1-Csm3 (fission yeast Swi1-Swi3 and human TIMELESS-TIPIN) acts as a ‘molecular brake’ and promotes fork slowdown at proteinaceous replication fork barriers (RFBs), while the accessory helicase Rrm3 assists the replisome in removing protein obstacles. Here we show that Tof1-Csm3 complex promotes fork pausing independently of Rrm3 helicase by recruiting topoisomerase I (Top1) to the replisome. Topoisomerase II (Top2) partially compensates for the pausing decrease in cells when Top1 is lost from the replisome. The C-terminus of Tof1 is specifically required for Top1 recruitment to the replisome and fork pausing but not for DNA replication checkpoint (DRC) activation. We propose that forks pause at proteinaceous RFBs through a ‘sTOP’ mechanism (‘slowing down with TOPoisomerases I-II’), which we show also contributes to protecting cells from topoisomerase-blocking agents.
Project description:Here we analysed the role of yeast Senataxin (Sen1) in coordinating replication with transcription and in protecting genome integrity. Senataxin is mutated in the two severe neurodegenerative diseases AOA2 and ALS4. We show that a fraction of Sen1/Senataxin DNA/RNA helicase associates with replication forks and protects the integrity of those fork encountering highly expressed RNAPII genes. sen1 mutants accumulate aberrant DNA structures and RNA-DNA hybrids while forks clash head-on with RNAPII transcription units and counteract recombinogenic events and accumulation of checkpoint signals. Nrd1, which acts togheter with Sen1 in trascription temination, is not recruited at replication forks. nrd1 mutants does not display replication defects, high genome instability and checkpoint activation observed in sen1 mutants The Sen1 function in replication can be therefore separable from its role in RNA processing. We propose a role for Sen1/Senataxin during chromosome replication in facilitating replisome progression across RNAPII transcribed genes thus preventing DNA-RNA hybrids accumulation when forks encounter nascent transcripts on the lagging strand template. Chip on chip analysis was carried out as described (Bermejo et al., 2011), employing anti-Flag monoclonal antibody M2 (Sigma-Aldrich) Labelled probes were hybridized to Affymetrix S.cerevisiae Tiling 1.0 (P/N 900645) arrays and processed with TAS software.
Project description:Here we analysed the role of yeast Senataxin (Sen1) in coordinating replication with transcription and in protecting genome integrity. Senataxin is mutated in the two severe neurodegenerative diseases AOA2 and ALS4. We show that a fraction of Sen1/Senataxin DNA/RNA helicase associates with replication forks and protects the integrity of those fork encountering highly expressed RNAPII genes. sen1 mutants accumulate aberrant DNA structures and RNA-DNA hybrids while forks clash head-on with RNAPII transcription units and counteract recombinogenic events and accumulation of checkpoint signals. Nrd1, which acts togheter with Sen1 in trascription temination, is not recruited at replication forks. nrd1 mutants does not display replication defects, high genome instability and checkpoint activation observed in sen1 mutants The Sen1 function in replication can be therefore separable from its role in RNA processing. We propose a role for Sen1/Senataxin during chromosome replication in facilitating replisome progression across RNAPII transcribed genes thus preventing DNA-RNA hybrids accumulation when forks encounter nascent transcripts on the lagging strand template.
Project description:DNA topoisomerases solve topological problems during chromosome metabolism. We investigated where and when Top1 and Top2 are recruited on replicating chromosomes and how their inactivation affects fork integrity and DNA damage checkpoint activation. We show that, in the context of replicating chromatin, Top1 and Top2 act within a 600 bp region spanning the moving forks. Top2 exhibits additional S-phase clusters at specific intergenic loci, mostly containing promoters. TOP1 ablation does not affect fork progression and stability and does not cause activation of the Rad53 checkpoint kinase. top2 mutants accumulate sister chromatid junctions in S phase without affecting fork progression and activate Rad53 at the M/G1 transition. top1 top2 double mutants exhibit fork block and processing, and phosphorylation of Rad53 and γH2A in S phase. The exonuclease Exo1 influences fork processing and DNA damage checkpoint activation in top1 top2 mutants. Our data are consistent with a coordinated action of Top1 and Top2 in counteracting the accumulation of torsional stress and sister chromatid entanglement at replication forks, thus preventing the diffusion of topological changes along large chromosomal regions. A failure in resolving fork-related topological constrains during S phase may therefore result in abnormal chromosome transitions, DNA damage checkpoint activation and chromosome breakage during segregation. Keywords: ChIP-chip analysis
Project description:Yeast Sen1Senataxin is a RNA/DNA helicase that preserves replication forks across RNA Polymerase II-transcribed genes by counteracting RNA:DNA hybrids accumulation. We show that in Sen1-depleted cells early forks clashing head-on with transcription halt, and impair progression of sister forks within the same replicon. Unsolved replication-transcription collisions trigger the local firing of dormant origins that rescue arrested forks. In sen1 mutants the MRX and Mrc1/Ctf4-complexes protect those forks clashing with transcription by preventing genotoxic fork-resection events mediated by the Exo1 nuclease. Hence, sister forks within the same replicon remain coupled when one of the two forks halts. This is different when forks encounter double strand breaks. Moreover, the local firing of dormant origins is not prevented by checkpoint activation but depends on delayed adjacent forks. Furthermore, a productive head-on clash between replication and transcription requires the tuning of origin firing and coordination between Sen1, the MRX and Mrc1/Ctf4-complexes and Exo1.
Project description:Specialized topoisomerases solve the topological constraints arising when replication forks encounter transcription. We have investigated Top2 contribution in S phase transcription. Specifically in S phase, Top2 binds intergenic regions close to transcribed genes without influencing their transcription. The Top2-bound loci exhibit low nucleosome density and accumulate yH2A when Top2 is defective. These intergenic loci associate with the HMG-protein Hmo1 throughout the cell cycle and are refractory to the histone variant Htz1. In top2 mutants, Hmo1 is deleterious and accumulates at pericentromeric regions in G2/M. Our data indicate that Top2 is dispensable for transcription and that Hmo1 and Top2 bind in the proximity of genes transcribed in S phase suppressing chromosome fragility at the M-G1 transition. We propose that an Hmo1-dependent epigenetic signature together with Top2 mediate a S-phasen architectural pathway controlling replicon dynamics when forks encounter transcriptionto preserve genome integrity. Signal tracks in BED format suitable for visualization on the UCSC genome browser can be found at http://bio.ifom-ieo-campus.it/supplementary/Bermejo_et_al_CELL_2009
Project description:Replication stress activates the Mec1ATR and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1.
Project description:Replication stress activates the Mec1ATR and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1. BrdU incorporation profiles by ssDNA-BrdU IP on chip have been generated as described (Katou et al., 2003). Protein binding profiles by ChIP-chip analysis were generated as described (Bermejo et al., 2009). Labeled probes were hybridized to Affymetrix S.cerevisiae Tiling 1.0 (P/N 900645) arrays and processed with TAS software.