Genomics

Dataset Information

0

Highly efficient reprogramming to pluripotency and directed differentiation using synthetic mRNA


ABSTRACT: Clinical application of induced pluripotent stem (iPS) cells is limited by low efficiency of iPS derivation, and protocols that permanently modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-mutagenic strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem (RiPS) cells into terminally differentiated myogenic cells. Our method represents a safe, efficient strategy for somatic cell reprogramming and directing cell fates that has broad applicability for basic research, disease modeling and regenerative medicine.

ORGANISM(S): Homo sapiens

PROVIDER: GSE23583 | GEO | 2010/09/30

SECONDARY ACCESSION(S): PRJNA131835

REPOSITORIES: GEO

Similar Datasets

2010-09-30 | E-GEOD-23583 | biostudies-arrayexpress
2010-10-26 | E-GEOD-24901 | biostudies-arrayexpress
2010-10-26 | GSE24901 | GEO
2016-04-21 | GSE68035 | GEO
| PRJNA525829 | ENA
2010-06-23 | E-GEOD-22167 | biostudies-arrayexpress
2010-06-10 | GSE22167 | GEO
2009-05-29 | GSE16093 | GEO
2018-04-10 | GSE86051 | GEO
2018-04-10 | GSE86049 | GEO