Transcriptomics

Dataset Information

0

Single cell transcriptomics analysis of young Ncstnfl/fl (control), middle-aged Ncstnfl/fl (control) and middle-aged LeprCre; Ncstnfl/fl (cKO) bone and bone marrow


ABSTRACT: Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.

ORGANISM(S): Mus musculus

PROVIDER: GSE240291 | GEO | 2023/08/18

REPOSITORIES: GEO

Similar Datasets

2023-08-18 | GSE240289 | GEO
2023-08-18 | GSE240286 | GEO
2023-08-18 | GSE240288 | GEO
2023-08-01 | GSE207240 | GEO
2014-08-02 | E-GEOD-50716 | biostudies-arrayexpress
2021-06-11 | GSE166441 | GEO
2014-08-02 | E-GEOD-49791 | biostudies-arrayexpress
2014-08-02 | GSE49791 | GEO
2014-08-02 | GSE50716 | GEO
2020-11-07 | GSE149167 | GEO