Project description:Preconditioning strategies like caloric restriction (CR) and hypoxic preconditioning (HP) show remarkable protective effects in animal models of acute kidney injury (AKI). Since the underlying molecular effects are still not fully understood we performed an experiment directly comparing CR and HP in a murine model of ischemia-reperfusion injury (IRI) of the kidney. 8 to 12-week-old, male C57BL6/J mice were either put to 4 weeks of caloric restriction (70% of normal food intake) or placed in a hypoxic chamber (8%O2) for 3 consecutive days prior to IRI. Whole kidneys were used for transcriptional analysis (RNAseq) before and after ischemia-reperfusion injury to look for common effects of both modes of preconditioning.
Project description:This study was aimed to investigate the role and underlying mechanism of TRPM2 in cisplatin nephrotoxicity. Cisplatin-induced acute kidney injury (AKI) model was established in WT and TRPM2-KO mice. The transcriptome profiling of the kidneys of WT and TRPM2-KO mice treated with cisplatin was compared to find differentially expressed gene which may be related to TRPM2 on cisplatin nephrotoxicity.
Project description:The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia–reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis.
Project description:The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia–reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis.
Project description:Renal hypoxia is widespread in acute kidney injury (AKI) of various aetiologies. Hypoxia adaptation, conferred through the hypoxia-inducible factor (HIF), appears to be insufficient. Here we show that HIF activation in renal tubules through Pax8-rtTA-based inducible knockout of von Hippel-Lindau protein (VHL-KO) protects from rhabdomyolysis-induced AKI. In this model, histological observations indicate that injury mainly affects proximal convoluted tubules, with 5% necrosis at d1 and 40% necrosis at d2. HIF-1alpha up-regulation in distal tubules reflects renal hypoxia. However, lack of HIF in proximal tubules suggests insufficient adaptation by HIF. AKI in VHL-KO mice leads to prominent HIF activation in all nephron segments, as well as to reduced serum creatinine, serum urea, tubular necrosis, and apoptosis marker caspase-3 protein. At d1 after rhabdomyolysis, when tubular injury is potentially reversible, HIF mediated protection in AKI is associated with activated glycolysis, cellular glucose uptake and utilization, autophagy, vasodilation, and proton removal as demonstrated by qPCR, pathway enrichment analysis and immunohistochemistry. Together, our data provide evidence for a HIF-orchestrated multi-level shift towards glycolysis as a major mechanism for protection against acute tubular injury. All experiments were carried out in transgenic mice in which selective renal tubular VHL knockout (VHL-KO) was inducible by doxycycline (Reference: Mathia S, Paliege A, Koesters R, Peters H, Neumayer HH, Bachmann S, Rosenberger C. Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rtTA-based deletion of von Hippel-Lindau protein. Acta Physiol (Oxf). 2013; 207(3):565-76.). Four groups of animals were used: 1) controls: untreated mice; 2) VHL-KO: injected with doxycycline (0.1 mg per 10 g body weight SC), 4 days prior to sacrifice; 3) AKI: rhabdomyolysis; 4) VHL-KO/AKI: doxycycline plus rhabdomyolysis. To induce AKI, 50% glycerol (0.05 ml per 10 g body weight) was injected IM into the left hind limb under isoflurane narcosis. Drinking water was withdrawn between 20 h prior and 24 h after glycerol injection.