Genomics

Dataset Information

0

Gene expression regulation by C. elegans SAM-10


ABSTRACT: Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the C. elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian Single-Stranded DNA binding Protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation as well as positioning of a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted co-localization of active zone and synaptic vesicles. SAM-10 functions coordinately with LDB-1 (Lim Domain Binding protein-1), demonstrated by our observations that 1) mutations in either gene show similar defects in PLM neurons; and 2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.

ORGANISM(S): Caenorhabditis elegans

PROVIDER: GSE25285 | GEO | 2010/11/12

SECONDARY ACCESSION(S): PRJNA134831

REPOSITORIES: GEO

Similar Datasets

2010-11-12 | E-GEOD-25285 | biostudies-arrayexpress
2020-05-26 | PXD013434 | Pride
2020-04-10 | GSE131103 | GEO
2018-11-08 | GSE114336 | GEO
2014-07-07 | E-GEOD-57724 | biostudies-arrayexpress
2011-01-24 | BIOMD0000000302 | BioModels
2024-03-04 | PXD048927 | Pride
2014-07-07 | GSE57724 | GEO
2017-09-04 | PXD006622 | Pride
2018-10-26 | PXD004129 | Pride