Genomics

Dataset Information

0

HHGF Overexpression in Myoblast Sheets Enhances Their Angiogenic Potential in Rat Chronic Heart Failure


ABSTRACT: Ischemia, fibrosis, and remodeling lead to heart failure after severe myocardial infarction (MI). Myoblast sheet transplantation is a promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in this detrimental disease. We hypothesized that in a rat model of MI-induced chronic heart failure this therapy could further be improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression using microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for four weeks. Thereafter, we administered L6-WT (n=15) or L6-HGF (n=16) myoblast sheet therapy. Control rats (n=13) underwent LAD ligation and rethoracotomy without therapy and five rats underwent sham-operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy administration. We analyzed cardiac angiogenesis and left ventricular architecture from histological sections 4 weeks after therapy. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF-expression.

ORGANISM(S): Rattus norvegicus

PROVIDER: GSE25752 | GEO | 2010/12/10

SECONDARY ACCESSION(S): PRJNA134039

REPOSITORIES: GEO

Similar Datasets

2010-12-10 | E-GEOD-25752 | biostudies-arrayexpress
2023-11-30 | PXD045013 | Pride
2021-03-23 | PXD022212 | Pride
2017-01-28 | GSE94151 | GEO
2014-01-31 | E-GEOD-54530 | biostudies-arrayexpress
2014-01-31 | GSE54530 | GEO
2014-05-26 | E-GEOD-54612 | biostudies-arrayexpress
2012-01-28 | E-GEOD-35393 | biostudies-arrayexpress
2014-05-26 | GSE54612 | GEO
2012-01-28 | GSE35393 | GEO