Genomics

Dataset Information

0

Signaling to Transcription Networks in the Neuronal Retrograde Injury Response


ABSTRACT: Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate ~900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and ~4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified ~400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response

ORGANISM(S): Rattus norvegicus

PROVIDER: GSE26350 | GEO | 2010/12/29

SECONDARY ACCESSION(S): PRJNA136731

REPOSITORIES: GEO

Similar Datasets

2010-12-29 | E-GEOD-26350 | biostudies-arrayexpress
2024-02-02 | GSE249502 | GEO
2020-07-22 | GSE154659 | GEO
2008-10-25 | E-GEOD-11862 | biostudies-arrayexpress
2008-09-01 | GSE11862 | GEO
2022-06-11 | GSE205561 | GEO
2011-06-01 | E-GEOD-22291 | biostudies-arrayexpress
2018-07-06 | GSE97090 | GEO
2014-10-01 | E-GEOD-47900 | biostudies-arrayexpress
2020-12-10 | PXD022097 | Pride