Transcriptomics

Dataset Information

0

Two-component intranasal vaccine against SARS-CoV-2 Omicron variant


ABSTRACT: Mucosal immunity plays a pivotal role in providing comprehensive protection against upper-airway infections and effectively limiting the shedding and transmission of SARS-CoV-2. Despite its critical importance, there remains a notable absence of nasal spray vaccines endorsed for global use by the World Health Organization. This could be due to the inability of current intranasal vaccines to induce strong mucosal and systemic responses in humans, thus urgently entailing a next-generation of intranasal COVID-19 vaccines with novel and safe technologies. In this study, we prepared a two-component intranasal vaccine that combines adenovirus vectors with a self-assembled subunit protein. Specifically, the adenovirus vector expresses the spike protein of XBB.1.5 variant (Ad5XBB.1.5), and were mixed with the recombinant protein that developed derived from the receptor binding domain (RBD) of XBB.1.5 (RBDXBB.1.5-HR). Combination of Ad5XBB.1.5 and RBDXBB.1.5-HR elicited superior humoral and cellular immunity against XBB.1.5-included variants compared with the individual components. Importantly, the STING signaling pathway was found to be crucial for the adjuvant effect of the adenovirus vector. In addition, to increase the broad-spectrum neutralizing capacities, a trimeric protein derived from the BA.5 variant (RBDBA.5-HR) was incorporated to formulate a three-component vaccine (Ad5XBB.1.5+RBDXBB.1.5-HR+RBDBA.5-HR), indicating the utilization of a combination of an adenovirus-vectored and subunit protein vaccines has the potential to serve as a next-generation intranasal vaccine platform. Of note, intranasally delivery of two-component vaccine provided protective immunity against live Omicron XBB.1.16 virus challenge in mice. Furthermore, the combination of adenovirus and subunit protein vaccine demonstrates excellent tolerability and safety in human subjects, and is able to induce enhanced mucosal immunity as well as high levels of sera neutralizing antibody in all participants. These findings underscore its suitability for clinical application in the prevention of SARS-CoV-2 variants encompassing XBB lineages.

ORGANISM(S): Mus musculus

PROVIDER: GSE279004 | GEO | 2025/06/02

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-02-14 | GSE245040 | GEO
2023-05-01 | GSE223476 | GEO
2019-01-29 | GSE125765 | GEO
2023-05-28 | GSE227647 | GEO
2023-05-28 | GSE227648 | GEO
2023-05-28 | GSE228111 | GEO
2023-05-28 | GSE228112 | GEO
2023-06-26 | GSE229622 | GEO
2023-05-28 | GSE228594 | GEO
2025-05-21 | GSE294031 | GEO