Transcriptome analyses of fetal testicular interstitial cells (W-EGFP) treated with Smoothened Agonist (SAG)
Ontology highlight
ABSTRACT: Fetal Leydig cells are essential for masculinization through androgen production during fetal development. Previous studies have indicated that Desert Hedgehog regulates differentiation from progenitor cells. Our previous research showed a significant upregulation of energy metabolism-related genes during fetal Leydig cell differentiation. However, the underlying regulatory mechanisms remain unresolved. Here, we reveal that Desert Hedgehog rapidly activates energy metabolisms in testicular interstitial cells (W-EGFP cells) containing fetal Leydig progenitor cells without activating gene expression.
Project description:Ad4BP/SF-1 is a transcription factor regulating gene expression related to steroidogenesis and energy metabolism. Previous studies have indicated that Ad4BP/SF-1 regulates fetal Leydig cell differentiation from progenitor cells. However, the underlying regulatory mechanisms remain unclear. Here, we reveal that Ad4BP/SF-1 directly regulates energy metabolisms in differentiated fetal Leydig cells through transcriptional upregulation.
Project description:We analysed the transcriptional changes in the murine folliculostellate cell line TtT/GF after treatment with the Hedgehog signaling activator SAG or its solvent control DMSO, respectively. After activation of the Hedgehog signalling cascade the TtT/GF cells start to transcribe genes that are implicated in extracellular matrix formation and some neuropeptides are transcribed. Partially these genes are described to alter the hormone status in endocrine cells. Therefore, our data implicate that Hedgehog signalling can control hormone secretion in the pituitary gland in an indirect way via folliculostellate cells.
Project description:Human fibroblasts from a control or a patient with compound heterozygous variants in KIAA0753 treated with SAG or WNT3A to test responses within canonical Hedgehog or WNT signaling.
Project description:To examine the transcriptome of early testicular somatic cells during gonadogenesis at 12.5dpc RNA sequencing (RNA-Seq) was performed on murine primary testicular cell lineages isolated from the Sf1-eGFP line by FACS. The three main somatic cell lineages of the testis were isolated: the Sertoli cells which direct male development; the fetal Leydig cells (FLCs) that produce steroid hormones and virilise the XY individual and a heterogenous population of interstitial cells, some of which give rise to the adult Leydig cells (ALCs). This dataset provides a platform for exploring the biology of FLCs and understanding the role of these cells in testicular development and masculinization of the embryo, and a basis for targeted studies designed to identify causes of idiopathic XY DSD. RNA-Seq of 3 enriched cell populations from 12.5dpc mouse gonad (Sertoli cells, Leydig cells and Interstitial cells isolated by FACS-sorting) on an Illumina HiSeq 1500, in triplicate.
Project description:To examine the transcriptome of early testicular somatic cells during gonadogenesis at 12.5dpc RNA sequencing (RNA-Seq) was performed on murine primary testicular cell lineages isolated from the Sf1-eGFP line by FACS. The three main somatic cell lineages of the testis were isolated: the Sertoli cells which direct male development; the fetal Leydig cells (FLCs) that produce steroid hormones and virilise the XY individual and a heterogenous population of interstitial cells, some of which give rise to the adult Leydig cells (ALCs). This dataset provides a platform for exploring the biology of FLCs and understanding the role of these cells in testicular development and masculinization of the embryo, and a basis for targeted studies designed to identify causes of idiopathic XY DSD.
Project description:Resistance to clinically available targeted drugs has become a critical issue in hedgehog-driven cancer treatment. Our previous studies have demonstrated two epigenetic/transcriptional targeted therapeutic strategies, BET inhibition and CDK7 inhibition, could overcome both primary and acquired resistance to Smoothened inhibitor (SMOi) drugs, providing a promising direction for novel anti-hedgehog drug development. In this study, we performed CRISPR-Cas9 screening of epigenetic/transcriptional targeted sgRNA library in hedgehog-driven medulloblastoma (SHH-MB) cells and combined with tumor dataset analyses to identify other potential epigenetic/transcriptional targeted strategies for treating aberrant hedgehog pathway and overcoming SMOi-resistance. Our results demonstrated structure specific recognition protein 1 (SSRP1), a subunit of Facilitates Chromatin Transcription (FACT) complex, was a hedgehog-induced essential oncogene and therapeutic target of hedgehog-driven cancer. FACT inhibitor CBL0137, which has entered human clinical trials against cancer, could effectively suppress multiple mouse and human hedgehog-driven cancer models that are either SMOi-responsive or -resistant both in vitro and in vivo. Mechanistically, CBL0137 exerted its anti-hedgehog activity mainly through targeting the transcription of GLI1/2, which are core transcription factors of hedgehog pathway. ChIP-qPCR analyses further revealed SSRP1 could bind to the promoter regions of GLI1/2, while CBL0137 treatment substantially disrupted these interactions. Moreover, CBL0137 could work synergistically with BET inhibitor or CDK7 inhibitor on antagonizing aberrant hedgehog pathway and growth of either SMOi-responsive or -resistant hedgehog-driven cancer models. Taken together, our study identified FACT inhibition as another promising epigenetic/transcriptional targeted therapeutic strategy for treating hedgehog-driven cancer and overcoming SMOi-resistance.
Project description:Physiologically, trophoblast progenitor cells differentiate into placental villous cytotrophoblast cells (CTBs). CTBs either differentiate into invasive lineage to yields extravillous cytotrophoblast cells (EVTs), or undergo cell fusion lineage to yields syncytiotrophoblast cells (STBs),Sonic hedgehog (Shh) together with indian hedgehog (Ihh) and desert hedgehog (Dhh) consist of ligand of hedgehog signaling pathway, which plays pivotal roles in regulating cell proliferation, cell differentiation, organogenesis and development, even involving in tumorigenesis and progression. previous study had summarized and indicatedthat hedgehog proteins played important roles in regulating hematopoiesis, vasculogenesis and angiogenesis during embryogenesis and development. Herein, we investigate the effect of the Sonic Hedgehog morphogen inhibitor Cyclopamine on JAR cells
Project description:Previous studies have established that fetal Leydig cells (FLCs) and adult Leydig cells (ALCs) show distinct functional characteristics. However, the lineage relationship between FLCs and ALCs has not been clarified yet. Here we reveal that a subset of FLCs dedifferentiate at fetal stages to give rise to ALCs at the pubertal stage. Moreover, the dedifferentiated cells contribute to the peritubular myoid cells and vascular pericyte populations in the neonatal testis, and these non-steroidogenic cells serve as potential ALC stem cells. We generated FLC lineage-specific Nr5a1 (Ad4BP/SF-1) gene disrupted mice and mice lacking the fetal Leydig enhancer (FLE) of the Nr5a1 gene. Phenotypes of these mice support the conclusion that most of the ALCs arise from dedifferentiated FLCs, and that the FLE of Nr5a1 gene is essential for both initial FLC differentiation and pubertal ALC redifferentiation.
Project description:Testicular fetal Leydig cells are specialized for androgen production during embryogenesis. Testosterone is essential for regulating sex differentiation, spermatogenesis, and fertility. Deficiencies in Leydig cell differentiation can lead to various disorders of sex development and male reproductive conditions, such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility. Understanding the differentiation of fetal Leydig cells is essential for comprehending male sexual differentiation, reproductive health, and fertility. Fetal Leydig cells originate from proliferating progenitor cells in the gonadal interstitium, marked by genes like Arx, Pdgfra, Tcf21, Wnt5a, and Nr2f2. However, the precise mechanisms governing the transition from interstitial cells to Leydig cells remain elusive. Through integrated approaches involving animal models and multiomics, we have demonstrated that fetal Leydig cells originate from a Nr2f2 positive non-steroidogenic interstitial cell population. NR2F2 promotes progenitor cell fate while suppressing Leydig cell differentiation. Moreover, embryonic deletion of Nr2f2 in mouse testes resulted in disorders of sex development, including reduced testicular size, Leydig cell hypoplasia, cryptorchidism, and hypospadias. Collectively, our findings highlight the critical role of Nr2f2 in orchestrating the transition from interstitial cells to Leydig cells during testicular development.
Project description:Testicular fetal Leydig cells are specialized for androgen production during embryogenesis. Testosterone is essential for regulating sex differentiation, spermatogenesis, and fertility. Deficiencies in Leydig cell differentiation can lead to various disorders of sex development and male reproductive conditions, such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility. Understanding the differentiation of fetal Leydig cells is essential for comprehending male sexual differentiation, reproductive health, and fertility. Fetal Leydig cells originate from proliferating progenitor cells in the gonadal interstitium, marked by genes like Arx, Pdgfra, Tcf21, Wnt5a, and Nr2f2 (COUP-TFII). However, the precise mechanisms governing the transition from interstitial cells to Leydig cells remain elusive. Through integrated approaches involving animal models and multiomics, we have demonstrated that fetal Leydig cells originate from a COUP-TFII positive non-steroidogenic interstitial cell population. COUP-TFII promotes progenitor cell fate while suppressing Leydig cell differentiation. Moreover, embryonic deletion of COUP-TFII in mouse testes resulted in disorders of sex development, including reduced testicular size, Leydig cell hypoplasia, cryptorchidism, and hypospadias. Collectively, our findings highlight the critical role of COUP-TFII in orchestrating the transition from interstitial cells to Leydig cells during testicular development.