The influence of cohesin on the short-scale dynamics of intact and damaged chromatin in different phases of the cell cycle
Ontology highlight
ABSTRACT: Cohesin organizes the genome into spatially segregated loops and topologically associated domains by loop extrusion. In addition, it ensures cohesion of sister chromatids after replication. Thus, cohesin is expected to limit chromatin dynamics by ensuring cohesion and compacting chromatin in the interphase. Nonetheless, loop extrusion is an example of chromatin dynamics; thus, cohesin could promote the dynamics of genomic loci at the scale of individual loops and contact domains. Moreover, given that the extruding activity of cohesin after replication is supplemented by its cohesive activity, the impact of cohesin on chromatin dynamics in different phases of the cell cycle may vary. Of particular interest is the cohesin’s role in the regulation of the dynamics of damaged chromatin, which remains insufficiently studied. Here, we visualized a genomic locus using the CRISPR-Sirius system in human cells with auxin-induced depletion of the cohesin subunit RAD21. Cohesin depletion increased the local spatial dynamics of the visualized locus on a time scale of fractions of a second to one minute. This effect was observed in both replicated and unreplicated chromatin. However, the increase in the mobility of the visualized locus upon cohesin depletion was more pronounced in the former. In addition, we showed that cohesin depletion did not affect the local mobility of double-strand break repair foci visualized using a fluorescent fragment of the repair factor 53BP1. Cohesin depletion did not affect the local mobility of repair foci in either replicated or unreplicated chromatin. The results indicate that cohesin constrains local spatial dynamics of genomic loci. At the same time, cohesive activity of cohesin is not indispensable for restricting chromatin dynamics, although it enhances the confinement effect. On the other hand, repair foci are less mobile structures than point chromatin loci, and cohesin does not affect their dynamics on the studied time scales.
ORGANISM(S): Homo sapiens
PROVIDER: GSE297215 | GEO | 2025/10/01
REPOSITORIES: GEO
ACCESS DATA