Transcriptomics

Dataset Information

0

LINE-1 retrotransposition in a mouse TDP-43 model of neurodegeneration marks motor cortex neurons for cell-intrinsic and cell non-autonomous programmed cell death.


ABSTRACT: A key pathological feature of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) is the loss of nuclear localization and accumulation of cytoplasmic inclusions of TAR-DNA binding protein 43 (TDP-43). TDP-43 is a nucleic acid-binding protein involved in transcriptional repression, mRNA splicing, and the regulation of retrotransposable elements (RTEs) and endogenous retroviruses (ERVs). RTEs/ERVs are mobile virus-like genetic elements that constitute about 45% of our genome and encode the capacity to replicate through an RNA intermediate and insert cDNA copies at de novo chromosomal locations. A causal role of RTEs/ERVs has been demonstrated in Drosophila in mediating both intracellular toxicity of TDP-43 and the intercellular spread of toxicity from glia to neurons. RTEs/ERVs are inappropriately expressed in postmortem tissues from ALS, FTD, and Alzheimer's Disease (AD) patients, but the role of RTEs/ERVs has not yet been examined in a vertebrate model of TDP-43 pathology. We utilized established transgenic mouse models that overexpress moderate levels of human wild-type TDP-43 or a mutant version with a specific ALS-causal Q331K amino acid substitution, together with a LINE-1-EGFP retrotransposon indicator line. We found that TDP-43 animals exhibit broad expression of RTEs/ERVs with LINE-1 retrotransposition in glia and neurons in the motor cortex. Expression begins with onset of neurological phenotypes, earlier in hTDP-43-Q331K animals and later in hTDP-43-WT. The LINE-1-EGFP retrotransposition reporter transiently labels spatially clustered groups of neurons and glia at the time of onset of motor symptoms, while EGFP-labeled neurons undergo cell death and are therefore lost over time. Unlabeled cells also die as a function of distance from the clusters of LINE-1-EGFP labeled neurons and glial cells. Together, these findings support the hypothesis that TDP-43 pathology triggers RTE/ERV expression in the motor cortex, that such expression marks cells for programmed cell death, with cell non-autonomous effects on nearby neurons and glial cells.

ORGANISM(S): Mus musculus

PROVIDER: GSE300423 | GEO | 2025/06/23

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2017-02-15 | GSE85398 | GEO
2023-01-01 | GSE144640 | GEO
2021-10-08 | PXD029001 | JPOST Repository
2014-06-01 | E-GEOD-56500 | biostudies-arrayexpress
2020-11-01 | GSE156542 | GEO
2015-10-15 | GSE65973 | GEO
2014-06-01 | E-GEOD-33855 | biostudies-arrayexpress
2014-06-01 | E-GEOD-56503 | biostudies-arrayexpress
2022-08-12 | PXD029429 | Pride
2024-02-23 | GSE167557 | GEO