A single-nucleus dataset sampling subcutaneous white adipose from living donors to study familial partial lipodystrophy 2
Ontology highlight
ABSTRACT: Familial partial lipodystrophy 2 (FPLD2) is a rare disease characterized by adipose tissue loss and redistribution, and metabolic dysfunction. FPLD2 is caused by pathogenic variants in the LMNA gene, encoding nuclear lamins A/C, structural proteins that control nuclear function and gene expression. However, the mechanisms driving adipocyte loss in FPLD2 remain poorly defined. In this study, we recruited eight families with developing or established FPLD2 and performed clinical, histological, and transcriptomic analyses of subcutaneous adipose tissue biopsies. Bulk and single-nuclei RNA-sequencing revealed suppression of lipid metabolism and mitochondrial pathways, alongside increased inflammation. These signatures were mirrored in tamoxifen-inducible adipocyte-specific Lmna knockout mice, in which lamin A/C-deficient adipocytes shrank and disappeared. Lmna-deficient fibroblasts shared similar gene expression changes, linked to altered chromatin accessibility, underscoring lamin A/C’s potential regulatory role in lipid metabolism and inflammatory programs. By directly comparing atrophic and hypertrophic adipose depots in FPLD2, and integrating human, mouse, and in vitro models, this study provides new insights into disease progression and potential therapeutic targets.
ORGANISM(S): Homo sapiens
PROVIDER: GSE310542 | GEO | 2025/11/22
REPOSITORIES: GEO
ACCESS DATA