LONP-1 deficiency causes dysregulated protein synthesis within mitochondria that is restored by mitoribosomal mutations
Ontology highlight
ABSTRACT: Mitochondrial homeostasis is maintained by multiple molecular chaperones and proteases located within the organelle. The mitochondrial matrix-localized protease LONP-1 degrades oxidatively damaged or misfolded proteins. Importantly, LONP-1 also regulates mitochondrial DNA replication. Here, we show that mutations in C. elegans that impair LONP-1 function cause dysregulation of mitochondrial DNA replication, mitochondrial RNA transcription and protein synthesis within the mitochondrial matrix. LONP-1 deficient worms had reduced levels of oxidative phosphorylation proteins despite increased mt-DNA encoded protein synthesis. Via a forward genetic screen, we identified three mutations that restored mitochondrial function and the rate of development in lonp-1 mutants to levels comparable to those in wildtype worms. Interestingly, all three suppressor mutations were found in genes encoding mitochondrial ribosome proteins. A point mutation in the small mitochondrial ribosome protein MRPS-38 restored oxidative phosphorylation in lonp-1 mutant worms. Combined, our results suggest that LONP-1 regulates mitochondrial protein synthesis and that the suppressor mutations within MRPS-38 or MRPS-15 enhance oxidative phosphorylation complex assembly by slowing translation.
ORGANISM(S): Caenorhabditis elegans
PROVIDER: GSE315983 | GEO | 2026/01/09
REPOSITORIES: GEO
ACCESS DATA