Genomics

Dataset Information

0

Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae


ABSTRACT: The general pathways of eukaryotic mRNA decay occur via deadenylation followed by 3’ to 5’ degradation or decapping, although some endonuclease sites have been identified in metazoan mRNAs. To determine the role of endonucleases in mRNA degradation in Saccharomyces cerevisiae, we mapped 5’ monophosphate ends on mRNAs in wild-type and dcp2∆ xrn1∆ yeast cells, wherein mRNA endonuclease cleavage products are stabilized. This led to three important observations. First, only few mRNAs that undergo low level endonucleotyic cleavage were observed suggesting that endonucleases are not a major contributor to yeast mRNA decay. Second, independent of known decapping enzymes, we observed low levels of 5’ monophosphates on some mRNAs suggesting that an unknown mechanism can generate 5' exposed ends, although for all substrates tested Dcp2 was the primary decapping enzyme. Finally, we identified debranched lariat intermediates from intron-containing genes, demonstrating a significant discard pathway for mRNAs during the second step of pre-mRNA splicing, which is a potential new step to regulate gene expression.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE33712 | GEO | 2012/06/17

SECONDARY ACCESSION(S): PRJNA148473

REPOSITORIES: GEO

Similar Datasets

2012-06-17 | E-GEOD-33712 | biostudies-arrayexpress
2017-12-09 | GSE107841 | GEO
2018-01-26 | GSE86359 | GEO
2018-01-26 | GSE86360 | GEO
2021-11-16 | PXD020780 | Pride
2007-09-03 | E-MEXP-1012 | biostudies-arrayexpress
2022-09-06 | GSE205190 | GEO
2013-02-06 | E-GEOD-27049 | biostudies-arrayexpress
2013-02-06 | GSE27049 | GEO
2016-07-21 | E-GEOD-75146 | biostudies-arrayexpress