Genomics

Dataset Information

0

KLF1, KLF2 and c-myc control a regulatory network essential for embryonic erythropoiesis


ABSTRACT: The Krüppel-like factors, KLF1 and KLF2, positively regulate embryonic β-globin expression, and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1-/-KLF2-/- double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1-/- and KLF1-/-KLF2-/-. Among these, c-myc emerged as a central node in the most significant gene network. c-myc expression is synergistically regulated by KLF1 and KLF2, and both factors bind the c-myc promoters. To characterize the role of c-myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia analogous to KLF1-/-KLF2-/-. In the absence of c-myc, circulating erythroid cells do not show the normal increase in α- and β-like globin expression, but interestingly, have accelerated erythroid maturation, between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate c-myc, to control the primitive erythropoietic program.

ORGANISM(S): Mus musculus

PROVIDER: GSE36427 | GEO | 2012/03/12

SECONDARY ACCESSION(S): PRJNA153231

REPOSITORIES: GEO

Similar Datasets

2012-03-12 | E-GEOD-36427 | biostudies-arrayexpress
2011-03-02 | E-GEOD-27602 | biostudies-arrayexpress
2008-06-11 | E-GEOD-10002 | biostudies-arrayexpress
2011-03-02 | GSE27602 | GEO
2008-01-03 | GSE10002 | GEO
| phs001212 | dbGaP
| PRJNA153231 | ENA
2010-04-08 | E-GEOD-20478 | biostudies-arrayexpress
2020-08-25 | GSE156306 | GEO
2021-12-01 | GSE163595 | GEO