Transcriptomics

Dataset Information

0

Switch from LB pH7 to M9 pH5


ABSTRACT: Salmonella must express and deploy a type III secretion system located in Salmonella pathogenicity island 2 (SPI-2) in order to survive in host phagocytic vacuoles and to cause systemic infection in mouse models of typhoid fever. A genome-wide approach to screening for Salmonella genes that are transcriptionally co-regulated in vitro with SPI-2 genes was used to identify bacterial loci that might function in a mouse model of systemic disease. Strains with mutations in three SPI-2 co-expressed genes were constructed and tested for their ability to cause disease in mice. We found that virK, a homologue of a Shigella virulence determinant, and rcsC, a sensor kinase, are important at late stages of infection. A second Salmonella gene that has VirK homology, somA, is also important for systemic infection in mice. We have shown that expression of both virK and somA requires the transcription factor PhoP, whereas rcsC does not. Additionally, rcsC expression does not require the transcription factor OmpR, but expression of one of the known targets of RcsC, the yojN rcsB putative operon, does require OmpR. virK, somA and rcsC are expressed in tissue culture macrophages and confer Salmonella resistance to the cationic peptide polymyxin B. We conclude that virK, somA and rcsC are important for late stages of Salmonella enteric fever, and that they probably contribute to the remodelling of the bacterial outer membrane in response to the host environment. Groups of assays that are related as part of a time series. Keywords: time_series_design

ORGANISM(S): Salmonella enterica subsp. enterica serovar Typhimurium

PROVIDER: GSE3735 | GEO | 2005/12/03

SECONDARY ACCESSION(S): PRJNA93895

REPOSITORIES: GEO

Similar Datasets

2005-12-02 | E-GEOD-3735 | biostudies-arrayexpress
2005-10-07 | E-SMDB-1981 | biostudies-arrayexpress
2018-06-01 | GSE104354 | GEO
2009-12-25 | GSE18089 | GEO
2016-08-10 | E-GEOD-71907 | biostudies-arrayexpress
2016-08-10 | GSE71907 | GEO
2014-03-27 | GSE49914 | GEO
2011-11-10 | GSE33604 | GEO
2012-05-31 | GSE38378 | GEO
2012-05-30 | E-GEOD-38378 | biostudies-arrayexpress