ABSTRACT: An Affimetrix GeneChip Drosophila genome 2.0 array was used to study the effect of protocatechuic aldehyde on gene expression. The addition of 0.1 mM protocatechuic aldehyde to Drosophila S2 cells significantly affected the expression of 52 genes, with 29 being up-regulated and 23 being down-regulated.
Project description:An Affimetrix GeneChip Drosophila genome 2.0 array was used to study the effect of protocatechuic aldehyde on gene expression. The addition of 0.1 mM protocatechuic aldehyde to Drosophila S2 cells significantly affected the expression of 52 genes, with 29 being up-regulated and 23 being down-regulated. Drosophila S2 cells were incubated with protocatechuic aldehyde (0.1 mM). After 2 hr, the gene expression in Drosophila S2 cells was analyzed using Affymetrix microarrays.
Project description:We sought to determine the genes regulated by the Drosophila Hox protein AbdA in a homogenous cell system. S2-DRSC cells that have no Hox expression were stably transfected with HA-tagged AbdA under the control of a metallothionein promoter.
Project description:We report the MNase-diestion coupled to Next Generation Sequencing of Wild type Drosophila S2 cells or S2 cells over-expressing polycomb protein PH
Project description:In order to identify interaction partner of the Drosophila melanogaster TFIIA protein, we have immunoprecipitated an endogenously 3xFLAG-AID tagged TFIIA-L from Drosophila Schneider S2 cells
Project description:Circadian rhythms are cell-autonomous biological oscillations with a period of about 24 hours. Current models propose that transcriptional feedback loops are the principal mechanism for the generation of circadian oscillations. In these models, Drosophila S2 cells are generally regarded as ‘non-rhythmic’ cells, as they do not express several canonical circadian components. Using an unbiased multi-omics approach, we made the surprising discovery that Drosophila S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products are rhythmically expressed in a 24-hour cycle. Metabolomics analyses extended these findings and illustrated that central carbon metabolism and amino acid metabolism are the main pathways regulated in a rhythmic fashion. We thus demonstrate that daily genome-wide oscillations, coupled to metabolic cycles, take place in eukaryotic cells without the contribution of known circadian regulators.
Project description:Circadian rhythms are daily oscillations in metabolism and physiology and are generated by the circadian clock. In fruit fly Drosophila, the circadian clock is generated by a transcription-translation feedback loop in which the positive arm components Clock and Cycle activate the expression of the Period and Timeless genes of negative arm, as well as other circadian clock-regulated genes. After being retained in the cytoplasm, the Period and Timeless proteins then migrate to the nucleus to inhibit the Clock/Cycle transactivity by protein-protein interactions (PPIs). The endogenous circadian clock is synchronized with the geological (solar) clock via photoreceptors. Drosophila Cryptochrome protein functions as a circadian photoreceptor. In the early morning, exposure of Cryptochrome to light causes a conformational change in it which results in the formation of new PPIs. Light-activated Cryptochrome interacts with the core clock protein Timeless and the E3 ubiquitin ligase-substrate adaptor protein Jetlag, which results in the ubiquitylation of Timeless by Jetlag-E3 ligase complex and then degradation of Timeless within minutes by proteasome system. Rapid degradation of Timeless and then its partner protein Period, because of its instability in the absence of Timeless, relieves the inhibition on the Clock/Cycle transcription factors suddenly. Therefore, Clock/Cycle-driven expression of circadian clock-regulated genes are induced again, which is the restart of the circadian oscillation or the resetting of the clock. Following Timeless degradation, Cryptochrome is also degraded so the photoreceptor mechanism does not start a new resetting signal until all the required factors are re-synthesized in a circadian manner. Light-dependent degradation of Drosophila Cryptochrome can be observed in Drosophila S2 cell line in culture. In this project, we aimed at finding the interactome of Cryptochrome protein in Drosophila S2 cell line under light and in the dark using proximity labeling method. Because of the fast kinetics of Cryptochrome degradation, we chose the enzymes that can saturate in less than one hour. TurboID (TID) and APEX2 enzymes label proteins with biotin in the proximity even though they work with different mechanisms. They were fused to Cryptochrome protein, and proximity labeling was performed in the dark or under light. We have identified novel light-dependent or -independent interactors of Drosophila Cryptochrome and confirmed some of them using classical coimmunoprecipitation technique.
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs from S2 cells. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:Identification of the interaction partners of the protein ecdysoneless (Ecd) in Drosophila melanogaster S2 cells as well as profiling of the changes in binding for mutant, truncated Ecd del34 protein.