Genomics

Dataset Information

0

The Fun30 ATP-dependent nucleosome remodeler promotes resection of DNA double-strand break ends


ABSTRACT: Chromosomal double-strand breaks (DSBs) are resected by 5’-nucleases to form 3’ single-strand DNA (ssDNA) substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection were described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin where histones and histone-bound proteins represent barriers for resection enzymes. Here, we have identified the yeast nucleosome remodeling enzyme Fun30 as novel factor promoting DSB end resection. Fun30 is the major nucleosome remodeler promoting extensive Exo1- and Sgs1-dependent resection of DSBs while the RSC and INO80 chromatin remodeling complexes play redundant roles with Fun30 in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodeling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads around the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5’ strand processing and in the absence of either histone H3 K79 methylation or γ-H2A, which mediate recruitment of the Rad9 . Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.

ORGANISM(S): Schizosaccharomyces pombe Saccharomyces cerevisiae

PROVIDER: GSE38601 | GEO | 2012/10/04

SECONDARY ACCESSION(S): PRJNA168290

REPOSITORIES: GEO

Similar Datasets

2012-10-04 | E-GEOD-38601 | biostudies-arrayexpress
2023-05-01 | GSE221377 | GEO
2023-05-01 | GSE221033 | GEO
2020-07-10 | GSE141850 | GEO
2016-08-06 | E-GEOD-85253 | biostudies-arrayexpress
2016-08-06 | GSE85253 | GEO
2024-04-02 | GSE262706 | GEO
2021-09-10 | GSE181669 | GEO
2021-09-10 | GSE181668 | GEO
2021-09-10 | GSE181667 | GEO