Transcriptomics

Dataset Information

0

Hippocampal gene expression profiling in a rat model of posttraumatic epilepsy reveals temporal upregulation of lipid metabolism-related genes


ABSTRACT: Traumatic brain injury occasionally causes posttraumatic epilepsy. To elucidate the molecular events responsible for posttraumatic epilepsy, we established a rodent model that involved the injection of microliter quantities of FeCl3 solution into the amygdalar nuclear complex. We previously compared hippocampal gene expression profiles in the traumatic epilepsy model and normal rats at 5 days after brain injury (acute phase) and observed the role of inflammation. In this study, we focused on later stages of epileptogenesis. We compared gene expression profiles at 5, 15 (sub-chronic phase), and 30 days (chronic phase) after brain injury to identify temporal changes in molecular networks involved in epileptogenesis. A total of 81 genes was significantly (at least 2-fold) up- or downregulated over the course of disease progression. We found that genes related to lipid metabolism, namely, Apoa1, Gh, Mc4r, Oprk1, and Pdk4, were temporarily upregulated in the sub-chronic phase. Changes in lipid metabolism regulation might be related to seizure propagation during epileptogenesis. This temporal description of hippocampal gene expression profiles throughout epileptogenesis provides clues to potential markers of disease phases and new therapeutic targets.

ORGANISM(S): Rattus norvegicus

PROVIDER: GSE40490 | GEO | 2012/12/31

SECONDARY ACCESSION(S): PRJNA174180

REPOSITORIES: GEO

Similar Datasets

2012-12-31 | E-GEOD-40490 | biostudies-arrayexpress
2022-07-14 | PXD031368 | JPOST Repository
2016-09-06 | E-GEOD-75119 | biostudies-arrayexpress
2016-09-06 | E-GEOD-75120 | biostudies-arrayexpress
2008-06-11 | E-GEOD-1834 | biostudies-arrayexpress
2016-09-06 | GSE75120 | GEO
2016-09-06 | GSE75119 | GEO
2008-06-13 | E-GEOD-5034 | biostudies-arrayexpress
2023-12-20 | GSE241219 | GEO
2023-02-10 | GSE222801 | GEO