Genomics

Dataset Information

0

Gene expression profiles in group G streptococci during infection


ABSTRACT: Streptococcus dysgalactiae subsp. equeisimilis (SDSE) has Lancefield group G or C antigens. Recent epidemiological studies reveal that invasive SDSE infections have been increasing in Asia, Europe and US. Although SDSE possesses similar virulence factors to S. pyogenes including streptolysin S (SLS) and streptolysin O (SLO), some important S. pyogenes virulence factors including active superantigens, SpeB and a hyarulonic acids capsule are missing in SDSE genome. The mechanisms and the key virulence factors for causing invasive diseases by SDSE are poorly understood. Here, we analyzed the transcriptome of SDSE in vivo using the murine sepsis model, revealing the strategy of SDSE to destruct host tissues with the virulence factors and to scavenge depleted nutrients. The expression of SLO operon increased at relatively early stage of infection while the SLS and hyaluronidases upregulated after 4h post infection. Microarray data suggested that SDSE degraded host tissue polysaccharides by streptococcal-secreting poly/oligosaccharide lyases and simultaneously used the Entner-Doudoroff pathway to metabolize acquired carbohydrates. A global negative virulence gene regulator CsrRS of SDSE modulated the expressions of genes encoding SLS and the carbohydrate metabolism enzymes. Moreover, csrS deficient mutant induced sever systemic hemolysis in mice. The most frequently isolated stG6792 strains from invasive disease secreted abundant SLS and SLO rather than other SDSE emm types, indicating the relationship between the SLS and SLO productions and poor outcome by the stG6792 strain infection. Our findings suggest that the concomitant regulation of virulence factors destructing the host tissues and metabolic enzymes play an important role to produce invasive diseases by SDSE.

ORGANISM(S): Streptococcus dysgalactiae subsp. equisimilis Streptococcus dysgalactiae subsp. equisimilis GGS_124

PROVIDER: GSE43222 | GEO | 2013/09/09

SECONDARY ACCESSION(S): PRJNA185006

REPOSITORIES: GEO

Similar Datasets

2013-09-09 | E-GEOD-43222 | biostudies-arrayexpress
2013-09-01 | GSE48775 | GEO
2016-12-31 | GSE50213 | GEO
2013-09-01 | E-GEOD-48775 | biostudies-arrayexpress
2021-11-24 | MODEL2105110001 | BioModels
2018-12-21 | GSE124234 | GEO
2011-11-24 | E-GEOD-31894 | biostudies-arrayexpress
2018-01-05 | GSE108748 | GEO
2007-01-30 | E-BUGS-33 | biostudies-arrayexpress
2015-12-03 | GSE75633 | GEO