Genomics

Dataset Information

0

Gene expression changes associated with progression of Irf8–/– CML-like disease into blast crisis after β-catenin activation


ABSTRACT: Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics, we observed that compound constitutive activation of β-catenin and deletion of Irf8 results in progression of CML-like disease into fatal blast crisis, elevated leukemic potential of BCR-ABL-induced LICs, and accumulation of Imatinib-resistant LICs in GMP-like populations. We found that progression of the disease is tightly connected to the magnitude of gene expression and that activated β-catenin enhances a pre-existing Irf8-deficient gene signature that was defined as a “progression specific signature” (PSS). We identified β-catenin as an amplifier of disease progression and as a critical step in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin-driven leukemia and imply both factors as targets in combinatorial therapy. We used microarrays to identify the gene expression signature in GMPs underlying CML-like disease progression and identified distinct classes of up- and down-regulated genes during this process defined as a “progression specific signature (PSS)”.

ORGANISM(S): Mus musculus

PROVIDER: GSE49054 | GEO | 2013/09/26

SECONDARY ACCESSION(S): PRJNA213468

REPOSITORIES: GEO

Similar Datasets

2013-09-26 | E-GEOD-49054 | biostudies-arrayexpress
| PRJNA213468 | ENA
2010-06-11 | E-GEOD-4170 | biostudies-arrayexpress
2006-02-21 | GSE4170 | GEO
2016-08-18 | GSE85744 | GEO
2013-01-01 | GSE43225 | GEO
2016-08-01 | E-MTAB-4333 | biostudies-arrayexpress
2016-08-01 | E-MTAB-4341 | biostudies-arrayexpress
2011-05-10 | E-GEOD-26260 | biostudies-arrayexpress
2020-05-06 | GSE100026 | GEO