Transcriptomics

Dataset Information

0

Global characterization of the oocyte-to-embryo transition in C. elegans uncovers a novel mRNA turnover mechanism


ABSTRACT: The oocyte-to-embryo transition (OET) is thought to be mainly driven by post-transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze, transcriptome-wide, expression of mRNAs, small RNAs and thousands of proteins in C. elegans oocytes, 1-cell, and 2-cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are turned over shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a novel polyC motif in the 3' untranslated regions (3' UTRs) of most of these degraded mRNAs. Transgenic reporter assays showed that this polyC motif is indeed required and sufficient for mRNA degradation after fertilization. We show that orthologs of human poly-C binding-protein specifically bind this motif. Together, our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.

ORGANISM(S): Caenorhabditis elegans

PROVIDER: GSE58141 | GEO | 2014/07/02

SECONDARY ACCESSION(S): PRJNA251377

REPOSITORIES: GEO

Similar Datasets

2014-07-02 | E-GEOD-58141 | biostudies-arrayexpress
2012-06-17 | E-GEOD-37453 | biostudies-arrayexpress
2024-03-14 | GSE228001 | GEO
2012-06-17 | GSE37453 | GEO
2021-06-21 | GSE166275 | GEO
2022-06-10 | GSE189543 | GEO
2016-06-07 | GSE75818 | GEO
2023-03-27 | PXD041023 | Pride
2019-07-10 | GSE124144 | GEO
2021-04-23 | PXD020293 | Pride